Section TcNNRC.
Require Import String.
Require Import List.
Require Import Arith.
Require Import Program.
Require Import EquivDec Morphisms.
Require Import Utils BasicSystem.
Require Import cNNRC.
Typing rules for NNRC
Section typ.
Context {
m:
basic_model}.
Inductive nnrc_type :
tbindings ->
nnrc ->
rtype ->
Prop :=
|
TNNRCVar {τ}
tenv v :
lookup equiv_dec tenv v =
Some τ ->
nnrc_type tenv (
NNRCVar v) τ
|
TNNRCConst {τ}
tenv c :
data_type (
normalize_data brand_relation_brands c) τ ->
nnrc_type tenv (
NNRCConst c) τ
|
TNNRCBinop {τ₁ τ₂ τ}
tenv b e1 e2 :
binOp_type b τ₁ τ₂ τ ->
nnrc_type tenv e1 τ₁ ->
nnrc_type tenv e2 τ₂ ->
nnrc_type tenv (
NNRCBinop b e1 e2) τ
|
TNNRCUnop {τ₁ τ}
tenv u e1 :
unaryOp_type u τ₁ τ ->
nnrc_type tenv e1 τ₁ ->
nnrc_type tenv (
NNRCUnop u e1) τ
|
TNNRCLet {τ₁ τ₂}
v tenv e1 e2 :
nnrc_type tenv e1 τ₁ ->
nnrc_type ((
v,τ₁)::
tenv)
e2 τ₂ ->
nnrc_type tenv (
NNRCLet v e1 e2) τ₂
|
TNNRCFor {τ₁ τ₂}
v tenv e1 e2 :
nnrc_type tenv e1 (
Coll τ₁) ->
nnrc_type ((
v,τ₁)::
tenv)
e2 τ₂ ->
nnrc_type tenv (
NNRCFor v e1 e2) (
Coll τ₂)
|
TNNRCIf {τ}
tenv e1 e2 e3 :
nnrc_type tenv e1 Bool ->
nnrc_type tenv e2 τ ->
nnrc_type tenv e3 τ ->
nnrc_type tenv (
NNRCIf e1 e2 e3) τ
|
TNNRCEither {τ τ
l τ
r}
tenv ed xl el xr er :
nnrc_type tenv ed (
Either τ
l τ
r) ->
nnrc_type ((
xl,τ
l)::
tenv)
el τ ->
nnrc_type ((
xr,τ
r)::
tenv)
er τ ->
nnrc_type tenv (
NNRCEither ed xl el xr er) τ.
End typ.
Main lemma for the type correctness of NNNRC
Theorem typed_nnrc_yields_typed_data {
m:
basic_model} {τ} (
env:
bindings) (
tenv:
tbindings) (
e:
nnrc) :
bindings_type env tenv ->
nnrc_type tenv e τ ->
(
exists x, (
nnrc_core_eval brand_relation_brands env e) =
Some x /\ (
data_type x τ)).
Proof.
intros.
revert env H.
dependent induction H0;
simpl;
intros.
-
unfold bindings_type in *.
dependent induction H0.
simpl in *;
congruence.
simpl in *.
destruct x;
simpl in *.
elim H0;
clear H0;
intros.
destruct y;
simpl in *.
rewrite H0 in *;
clear H0.
revert H.
elim (
equiv_dec v s0);
intros.
exists d.
inversion H.
rewrite H3 in *;
clear H3 H a.
split; [
reflexivity|
assumption].
specialize (
IHForall2 H);
clear H.
assumption.
-
exists (
normalize_data brand_relation_brands c).
split; [
reflexivity|
assumption].
-
specialize (
IHnnrc_type1 env H0);
specialize (
IHnnrc_type2 env H0).
elim IHnnrc_type1;
intros;
clear IHnnrc_type1;
elim IHnnrc_type2;
intros;
clear IHnnrc_type2.
elim H1;
clear H1;
intros.
elim H2;
clear H2;
intros.
rewrite H1;
rewrite H2.
simpl;
apply (@
typed_binop_yields_typed_data _ _ _ _ _ _ _ _ τ₁ τ₂ τ);
assumption.
-
specialize (
IHnnrc_type env H1).
elim IHnnrc_type;
intros;
clear IHnnrc_type.
elim H2;
clear H2;
intros.
rewrite H2;
clear H2.
simpl;
apply (@
typed_unop_yields_typed_data _ _ _ _ _ _ _ _ τ₁ τ);
assumption.
-
destruct (
IHnnrc_type1 _ H)
as [?[
re1 ?]].
destruct (
IHnnrc_type2 ((
v,
x)::
env))
as [?[
re2 ?]].
+
apply Forall2_cons;
intuition.
+
unfold var in *.
rewrite re1,
re2.
eauto.
-
specialize (
IHnnrc_type1 env H).
elim IHnnrc_type1;
intros;
clear IHnnrc_type1.
elim H0;
clear H0;
intros.
rewrite H0;
clear H0;
simpl.
dependent induction H1.
rewrite Forall_forall in *.
induction dl;
simpl in *.
+
exists (
dcoll []).
split; [
reflexivity|
apply dtcoll;
apply Forall_nil].
+
assert (
forall x :
data,
In x dl ->
data_type x r)
by (
intros;
apply (
H0 x0);
right;
assumption).
specialize (
IHdl H1);
clear H1.
elim IHdl;
intros;
clear IHdl.
elim H1;
clear H1;
intros.
unfold lift in H1.
unfold var in *.
assert (
exists x1,
rmap (
fun d1 :
data =>
nnrc_core_eval brand_relation_brands ((
v,
d1) ::
env)
e2)
dl =
Some x1 /\ (
dcoll x1) =
x0).
revert H1.
elim (
rmap (
fun d1 :
data =>
nnrc_core_eval brand_relation_brands ((
v,
d1) ::
env)
e2)
dl);
intros.
exists a0;
split;
try inversion H1;
reflexivity.
congruence.
elim H3;
clear H3;
intros.
elim H3;
clear H3;
intros.
rewrite H3.
rewrite <-
H4 in *;
clear H1 H3 H4;
simpl.
specialize (
IHnnrc_type2 ((
v,
a)::
env)).
assert (
bindings_type ((
v,
a) ::
env) ((
v, τ₁) ::
tenv)).
unfold bindings_type.
apply Forall2_cons;
try assumption.
simpl;
split;
try reflexivity.
assert (
r = τ₁)
by (
apply rtype_fequal;
assumption).
rewrite H1 in *;
clear H1 x.
apply (
H0 a);
left;
reflexivity.
specialize (
IHnnrc_type2 H1);
clear H1.
elim IHnnrc_type2;
clear IHnnrc_type2;
intros.
elim H1;
clear H1;
intros.
rewrite H1;
simpl.
exists (
dcoll (
x2::
x1));
split;
try reflexivity.
apply dtcoll.
rewrite Forall_forall;
simpl;
intros.
elim H4;
clear H4;
intros.
rewrite H4 in *;
assumption.
dependent induction H2.
rewrite Forall_forall in *.
assert (
r0 = τ₂)
by (
apply rtype_fequal;
assumption).
rewrite H5 in *;
clear H5.
apply (
H1 x4);
assumption.
-
specialize (
IHnnrc_type1 env H);
specialize (
IHnnrc_type2 env H);
specialize (
IHnnrc_type3 env H).
elim IHnnrc_type1;
intros;
clear IHnnrc_type1;
elim IHnnrc_type2;
intros;
clear IHnnrc_type2;
elim IHnnrc_type3;
intros;
clear IHnnrc_type3.
elim H0;
clear H0;
intros.
elim H1;
clear H1;
intros.
elim H2;
clear H2;
intros.
rewrite H0.
simpl.
dependent induction H3.
destruct b.
+
rewrite H1.
exists x0;
split; [
reflexivity|
assumption].
+
rewrite H2.
exists x1;
split; [
reflexivity|
assumption].
-
destruct (
IHnnrc_type1 _ H)
as [
dd [
evald typd]].
apply data_type_Either_inv in typd.
rewrite evald.
destruct typd as [[
ddl[?
typd]]|[
ddr[?
typd]]];
subst.
+
destruct (
IHnnrc_type2 ((
xl,
ddl)::
env));
unfold bindings_type in *;
auto.
+
destruct (
IHnnrc_type3 ((
xr,
ddr)::
env));
unfold bindings_type in *;
auto.
Qed.
Global Instance nnrc_type_lookup_equiv_prop {
m:
basic_model} :
Proper (
lookup_equiv ==>
eq ==>
eq ==>
iff)
nnrc_type.
Proof.
cut (
Proper (
lookup_equiv ==>
eq ==>
eq ==>
impl)
nnrc_type);
unfold Proper,
respectful,
lookup_equiv,
iff,
impl;
intros;
subst;
[
intuition;
eauto | ].
rename y0 into e.
rename y1 into τ.
rename x into b1.
rename y into b2.
revert b1 b2 τ
H H2.
induction e;
simpl;
inversion 2;
subst;
econstructor;
eauto 3.
-
rewrite <-
H;
trivial.
-
eapply IHe2;
try eassumption;
intros.
simpl;
match_destr.
-
eapply IHe2;
try eassumption;
intros.
simpl;
match_destr.
-
eapply IHe2;
try eassumption;
intros.
simpl;
match_destr.
-
eapply IHe3;
try eassumption;
intros.
simpl;
match_destr.
Qed.
End TcNNRC.
Ltac nnrc_inverter :=
match goal with
| [
H:
Coll _ =
Coll _ |-
_] =>
inversion H;
clear H
| [
H:
proj1_sig ?τ₁ =
Coll₀ (
proj1_sig ?τ₂) |-
_] =>
rewrite (
Coll_right_inv τ₁ τ₂)
in H;
subst
| [
H:
Coll₀ (
proj1_sig ?τ₂) =
proj1_sig ?τ₁ |-
_] =>
symmetry in H
| [
H:
nnrc_type _ (
NNRCVar _)
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_type _ (
NNRCConst _)
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_type _ (
NNRCBinop _ _ _ )
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_type _ (
NNRCUnop _ _ )
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_type _ (
NNRCLet _ _ _ )
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_type _ (
NNRCFor _ _ _ )
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_type _ (
NNRCIf _ _ _ )
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_type _ (
NNRCEither _ _ _ _ _ )
_ |-
_ ] =>
inversion H;
clear H
| [
H: (
_,
_) = (
_,
_) |-
_ ] =>
inversion H;
clear H
| [
H:
map (
fun x2 :
string * {τ₀ :
rtype₀ |
wf_rtype₀ τ₀ =
true} =>
(
fst x2,
proj1_sig (
snd x2))) ?
x0 =
nil |-
_] =>
apply (
map_rtype_nil x0)
in H;
simpl in H;
subst
| [
H: (
map
(
fun x :
string * {τ₀ :
rtype₀ |
wf_rtype₀ τ₀ =
true} =>
(
fst x,
proj1_sig (
snd x)))
_)
=
(
map
(
fun x' :
string * {τ₀' :
rtype₀ |
wf_rtype₀ τ₀' =
true} =>
(
fst x',
proj1_sig (
snd x')))
_) |-
_ ] =>
apply map_rtype_fequal in H;
trivial
| [
H:
Rec _ _ _ =
Rec _ _ _ |-
_ ] =>
generalize (
Rec_inv H);
clear H;
intro H;
try subst
| [
H:
context [(
_::
nil) =
map
(
fun x :
string * {τ₀ :
rtype₀ |
wf_rtype₀ τ₀ =
true} =>
(
fst x,
proj1_sig (
snd x)))
_] |-
_] =>
symmetry in H
| [
H:
context [
map
(
fun x :
string * {τ₀ :
rtype₀ |
wf_rtype₀ τ₀ =
true} =>
(
fst x,
proj1_sig (
snd x)))
_ = (
_::
nil) ] |-
_] =>
apply map_eq_cons in H;
destruct H as [? [? [? [??]]]]
| [
H:
nnrc_type _ _ (
snd ?
x) |-
_ ] =>
destruct x
| [
H:
Coll₀
_ =
Coll₀
_ |-
_ ] =>
inversion H;
clear H
| [
H:
Rec₀
_ _ =
Rec₀
_ _ |-
_ ] =>
inversion H;
clear H
| [
H:
unaryOp_type AColl _ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unaryOp_type AFlatten _ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unaryOp_type (
ARec _)
_ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unaryOp_type (
ADot _)
_ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unaryOp_type (
ARecProject _)
_ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unaryOp_type (
ARecRemove _)
_ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unaryOp_type ALeft _ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unaryOp_type ARight _ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
binOp_type AConcat _ _ _ |-
_ ] =>
inversion H;
clear H
| [
H:
binOp_type AAnd _ _ _ |-
_ ] =>
inversion H;
clear H
| [
H:
binOp_type AMergeConcat _ _ _ |-
_ ] =>
inversion H;
clear H
| [
H:
context [@
equiv_dec ?
a ?
b ?
c ?
d ?
v ?
v] |-
_]
=>
destruct (@
equiv_dec a b c d v v); [ |
congruence]
| [
H:
context [
string_eqdec ?
v ?
v] |-
_]
=>
destruct (
string_eqdec v v); [ |
congruence]
| [
H:
context [
string_dec ?
v ?
v] |-
_]
=>
destruct (
string_dec v v); [ |
congruence]
| [
H:
context [
string_dec ?
v ?
v] |-
_]
=>
destruct (
string_dec v v); [ |
congruence]
| [|-
context [@
equiv_dec ?
a ?
b ?
c ?
d ?
v ?
v] ]
=>
destruct (@
equiv_dec a b c d v v); [ |
congruence]
| [|-
context [
string_eqdec ?
v ?
v]]
=>
destruct (
string_eqdec v v); [ |
congruence]
| [|-
context [
string_dec ?
v ?
v]]
=>
destruct (
string_dec v v); [ |
congruence]
| [|-
context [
string_dec ?
v ?
v]]
=>
destruct (
string_dec v v); [ |
congruence]
| [
H:
equiv ?
v ?
v |-
_] =>
clear H
| [
H:?
v = ?
v |-
_] =>
clear H
| [
H:
Some _ =
Some _ |-
_ ]
=>
inversion H;
clear H
end;
try rtype_equalizer;
try assumption;
try subst;
simpl in *;
try nnrc_inverter.
Ltac nnrc_input_well_typed :=
repeat progress
match goal with
| [
HO:
nnrc_type ?Γ ?
op ?τ
out,
HE:
bindings_type ?
env ?Γ
|-
context [(
nnrc_core_eval brand_relation_brands ?
env ?
op)]] =>
let xout :=
fresh "
dout"
in
let xtype :=
fresh "τ
out"
in
let xeval :=
fresh "
eout"
in
destruct (
typed_nnrc_yields_typed_data env Γ
op HE HO)
as [
xout [
xeval xtype]];
rewrite xeval in *;
simpl
end.