Module RType
Section rtypes₀.
Syntax of types. Note that there is no guarantee yet that records are well formed. i.e., having distinct fields.
Context {ftype:foreign_type}.
Unset Elimination Schemes.
Inductive rtype₀ : Set :=
| Bottom₀ : rtype₀
| Top₀ : rtype₀
| Unit₀ : rtype₀
| Nat₀ : rtype₀
| Bool₀ : rtype₀
| String₀ : rtype₀
| Coll₀ (r:rtype₀) : rtype₀
| Rec₀ (k:record_kind) (srl:list (string* rtype₀)) : rtype₀
| Either₀ (tl tr:rtype₀) : rtype₀
| Arrow₀ (tin tout : rtype₀) : rtype₀
| Brand₀ : brands -> rtype₀
| Foreign₀ (ft:foreign_type_type) : rtype₀.
Set Elimination Schemes.
Notation "⊥₀" := Bottom₀.
Notation "⊤₀" := Top₀.
Definition rtype₀_rect (P : rtype₀ -> Type)
(ftop : P ⊤₀)
(fbottom : P ⊥₀)
(funit : P Unit₀)
(fnat : P Nat₀)
(fbool : P Bool₀)
(fstring : P String₀)
(fcol : forall t : rtype₀, P t -> P (Coll₀ t))
(frec : forall (k:record_kind) (r : list (string * rtype₀)), Forallt (fun ab => P (snd ab)) r -> P (Rec₀ k r))
(feither : forall l r, P l -> P r -> P (Either₀ l r))
(farrow : forall tin tout, P tin -> P tout -> P (Arrow₀ tin tout))
(fbrand : forall b, P (Brand₀ b))
(fforeign : forall ft, P (Foreign₀ ft))
:=
fix F (t : rtype₀) : P t :=
match t as t0 return (P t0) with
| ⊤₀ => ftop
| ⊥₀ => fbottom
| Unit₀ => funit
| Nat₀ => fnat
| Bool₀ => fbool
| String₀ => fstring
| Coll₀ x => fcol x (F x)
| Rec₀ k x => frec k x ((fix Frec (r : list (string * rtype₀)) : Forallt (fun ab => P (snd ab)) r :=
match r as c0 with
| nil => Forallt_nil _
| cons sd c0 => @Forallt_cons _ (fun ab => P (snd ab)) sd c0 (F (snd sd)) (Frec c0)
end) x)
| Either₀ l r => feither l r (F l) (F r)
| Arrow₀ tin tout => farrow tin tout (F tin) (F tout)
| Brand₀ b => fbrand b
| Foreign₀ ft => fforeign ft
end.
Definition rtype₀_ind (P : rtype₀ -> Prop)
(ftop : P ⊤₀)
(fbottom : P ⊥₀)
(funit : P Unit₀)
(fnat : P Nat₀)
(fbool : P Bool₀)
(fstring : P String₀)
(fcol : forall t : rtype₀, P t -> P (Coll₀ t))
(frec : forall (k:record_kind) (r : list (string * rtype₀)), Forall (fun ab => P (snd ab)) r -> P (Rec₀ k r))
(feither : forall l r, P l -> P r -> P (Either₀ l r))
(farrow : forall tin tout, P tin -> P tout -> P (Arrow₀ tin tout))
(fbrand : forall b, P (Brand₀ b))
(fforeign : forall ft, P (Foreign₀ ft))
:=
fix F (t : rtype₀) : P t :=
match t as t0 return (P t0) with
| ⊤₀ => ftop
| ⊥₀ => fbottom
| Unit₀ => funit
| Nat₀ => fnat
| Bool₀ => fbool
| String₀ => fstring
| Coll₀ x => fcol x (F x)
| Rec₀ k x => frec k x ((fix Frec (r : list (string * rtype₀)) : Forall (fun ab => P (snd ab)) r :=
match r as c0 with
| nil => Forall_nil _
| cons sd c0 => @Forall_cons _ (fun ab => P (snd ab)) sd c0 (F (snd sd)) (Frec c0)
end) x)
| Either₀ l r => feither l r (F l) (F r)
| Arrow₀ tin tout => farrow tin tout (F tin) (F tout)
| Brand₀ b => fbrand b
| Foreign₀ ft => fforeign ft
end.
Definition rtype₀_rec (P:rtype₀->Set) := rtype₀_rect P.
Global Instance rtype₀_eqdec : EqDec rtype₀ eq.
Proof.
red;
unfold equiv,
complement.
induction x;
destruct y;
try solve[
right;
inversion 1];
try solve[
left;
trivial].
-
destruct (
IHx y)
as [
e|
e].
+
left;
f_equal;
trivial.
+
right;
intro n.
apply e;
inversion n;
trivial.
-
destruct (
k ==
k0);
unfold equiv,
complement in *.
+
destruct (
list_Forallt_eq_dec r srl);
subst;
auto.
*
apply (
forallt_impl H).
apply forallt_weaken;
clear;
intros.
destruct x;
destruct y;
simpl in *.
apply pair_eq_dec;
eauto.
apply string_dec.
*
right;
inversion 1;
auto.
+
right;
inversion 1;
auto.
-
destruct (
IHx1 y1);
unfold equiv,
complement in *.
+
destruct (
IHx2 y2);
unfold equiv,
complement in *.
*
left;
subst;
trivial.
*
right;
inversion 1;
eauto.
+
right;
inversion 1;
eauto.
-
destruct (
IHx1 y1);
unfold equiv,
complement in *.
+
destruct (
IHx2 y2);
unfold equiv,
complement in *.
*
left;
subst;
trivial.
*
right;
inversion 1;
eauto.
+
right;
inversion 1;
eauto.
-
destruct (
b ==
b0);
unfold equiv,
complement in *;
[
left |
right];
congruence.
-
destruct (
foreign_type_dec ft ft0).
+
left;
f_equal;
apply e.
+
right;
inversion 1;
congruence.
Defined.
End rtypes₀.
Notation "⊥₀" := Bottom₀.
Notation "⊤₀" := Top₀.
Section well_formed_rtypes.
Context {ftype:foreign_type}.
Context {br:brand_relation}.
Fixpoint wf_rtype₀ (τ:rtype₀): bool
:= match τ with
| Coll₀ τ' => wf_rtype₀ τ'
| Rec₀ oc srl => is_list_sorted ODT_lt_dec (domain srl)
&& forallb (fun ab => wf_rtype₀ (snd ab)) srl
| Either₀ τl τr => wf_rtype₀ τl && wf_rtype₀ τr
| Arrow₀ τin τout => wf_rtype₀ τin && wf_rtype₀ τout
| Brand₀ b => if is_canon_brands_dec brand_relation_brands b then true else false
| _ => true
end.
Definition rtype : Set := {τ₀:rtype₀ | wf_rtype₀ τ₀ = true}.
Lemma wf_rtype₀_ext {τ₀:rtype₀} (pf1 pf2:wf_rtype₀ τ₀ = true) : pf1 = pf2.
Proof.
Lemma rtype_ext {τ₀} (wfτ1 wfτ2:wf_rtype₀ τ₀ = true) :
(exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true) τ₀ wfτ1) =
(exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true) τ₀ wfτ2).
Proof.
f_equal. apply wf_rtype₀_ext.
Defined.
Lemma rtype_fequal {τ₁ τ₂:rtype} : proj1_sig τ₁ = proj1_sig τ₂ -> τ₁ = τ₂.
Proof.
destruct τ₁;
destruct τ₂;
simpl;
intros;
subst.
apply rtype_ext.
Qed.
Lemma rtype_nequal {τ₁ τ₂:rtype} : τ₁ <> τ₂ -> proj1_sig τ₁ <> proj1_sig τ₂.
Proof.
Lemma map_rtype_fequal r1 r2 :
map
(fun x : string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true} =>
(fst x, proj1_sig (snd x))) r1 =
map
(fun x : string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true} =>
(fst x, proj1_sig (snd x))) r2 ->
r1 = r2.
Proof.
revert r2.
induction r1;
destruct r2;
simpl;
trivial;
try discriminate.
inversion 1.
f_equal;
auto.
destruct a;
destruct p;
simpl in *;
subst.
f_equal.
apply rtype_fequal;
auto.
Qed.
Lemma map_rtype_single_rec_fequal a τ r :
(a, proj1_sig τ)::nil =
map
(fun x : string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true} =>
(fst x, proj1_sig (snd x))) r ->
((a, τ)::nil) = r.
Proof.
Global Instance rtype_eq_dec : EqDec rtype eq.
Proof.
Lifted versions of the type constructors
This is the main type system, and always carries a proofs that the records are well formed
Program Definition Bottom : rtype := Bottom₀.
Program Definition Top : rtype := Top₀.
Program Definition Unit : rtype := Unit₀.
Program Definition Nat : rtype := Nat₀.
Program Definition Bool : rtype := Bool₀.
Program Definition String : rtype := String₀.
Definition Coll (τ:rtype): rtype :=
exist _ (Coll₀ (proj1_sig τ)) (proj2_sig τ).
Program Definition Either (τl τr:rtype) : rtype :=
exist _ (Either₀ (proj1_sig τl) (proj1_sig τr)) _.
Next Obligation.
Program Definition Arrow (τl τr:rtype) : rtype :=
exist _ (Arrow₀ (proj1_sig τl) (proj1_sig τr)) _.
Next Obligation.
Program Definition Foreign (ft:foreign_type_type) : rtype
:= Foreign₀ ft.
Program Definition Rec
(k:record_kind)
(srl:list (string* rtype))
(pf_sorted:is_list_sorted ODT_lt_dec (domain srl) = true) : rtype
:= Rec₀ k (map (fun x => (fst x, proj1_sig (snd x))) srl).
Next Obligation.
Program Definition Brand b : rtype := Brand₀ (canon_brands brand_relation_brands b).
Next Obligation.
Global Instance Brand_equiv_proper :
Proper (equiv_brands brand_relation_brands ==> eq) (Brand).
Proof.
Notation "⊥" := Bottom.
Notation "⊤" := Top.
Definition Option τ := Either τ Unit.
Theorem rtype_rect (P : rtype -> Type)
(ftop : P ⊤)
(fbottom : P ⊥)
(funit : P Unit)
(fnat : P Nat)
(fbool : P Bool)
(fstring : P String)
(fcol : forall t : rtype, P t -> P (Coll t))
(frec : forall (k:record_kind) (srl : list (string * rtype))
(pf:is_list_sorted ODT_lt_dec (domain srl) = true),
Forallt (fun ab => P (snd ab)) srl -> P (Rec k srl pf))
(feither : forall (τl τr:rtype), P τl -> P τr -> P (Either τl τr))
(farrow : forall (τin τout:rtype), P τin -> P τout -> P (Arrow τin τout))
(fbrand : forall b, P (Brand b))
(fforeign : forall ft, P (Foreign ft))
:
forall (τ:rtype), P τ.
Proof.
Hint Constructors Forallt.
destruct τ
as [τ₀
wfτ].
revert wfτ.
unfold Top,
Bottom,
Unit,
Nat,
Bool,
String,
Coll,
Rec,
Either,
Arrow in *.
Ltac r_ext := solve [erewrite (rtype_ext); eauto]. *)
induction τ₀;
simpl;
intros.
-
erewrite rtype_ext;
eauto.
-
erewrite rtype_ext;
eauto.
-
erewrite rtype_ext;
eauto.
-
erewrite rtype_ext;
eauto.
-
erewrite rtype_ext;
eauto.
-
erewrite rtype_ext;
eauto.
-
specialize (
fcol _ (
IHτ₀
wfτ)).
erewrite rtype_ext;
eauto.
-
revert frec wfτ
X;
clear.
intros frec.
intros.
assert (
srlpf:{
srl:
list (
string *
rtype) | (
map
(
fun x :
string * {τ₀ :
rtype₀ |
wf_rtype₀ τ₀ =
true} =>
(
fst x,
proj1_sig (
snd x)))
srl) =
r}).
+
clear P X frec.
rewrite andb_true_iff,
forallb_forall in wfτ.
destruct wfτ
as [
iss fb].
revert iss fb.
induction r;
intros.
*
exists nil;
simpl;
trivial.
*
rewrite domain_cons,
is_list_sorted_cons in iss.
destruct iss as [
iss isa].
destruct IHr as [
srl srlpf];
intuition.
specialize (
fb a).
simpl in fb;
intuition.
exists ((
fst a ,(
exist _ (
snd a)
H1))::
srl).
destruct a;
simpl.
congruence.
+
destruct srlpf as [
srl srleq].
assert (
dreq:
domain srl =
domain r).
rewrite <-
srleq;
simpl;
unfold domain.
rewrite map_map.
simpl.
apply map_eq;
apply Forall_forall;
auto.
assert (
pfs:
is_list_sorted ODT_lt_dec (
domain srl) =
true).
rewrite dreq;
rewrite andb_true_iff in wfτ;
intuition.
assert (
pff:
Forallt (
fun ab :
string *
rtype =>
P (
snd ab))
srl).
revert X.
rewrite <-
srleq.
clear.
induction srl;
simpl;
eauto.
destruct a;
destruct r;
simpl.
inversion 1;
subst;
eauto.
specialize (
frec k srl pfs pff).
destruct srleq.
erewrite (
rtype_ext);
eapply frec.
-
generalize wfτ;
intros.
rewrite andb_true_iff in wfτ.
destruct wfτ
as [
wfτ1
wfτ2].
specialize (
feither _ _ (
IHτ₀1
wfτ1) (
IHτ₀2
wfτ2)).
erewrite rtype_ext;
eauto.
-
generalize wfτ;
intros.
rewrite andb_true_iff in wfτ.
destruct wfτ
as [
wfτ1
wfτ2].
specialize (
farrow _ _ (
IHτ₀1
wfτ1) (
IHτ₀2
wfτ2)).
erewrite rtype_ext;
eauto.
-
revert fbrand b wfτ.
clear;
intros.
assert (
isc:
is_canon_brands brand_relation_brands b)
by match_destr_in wfτ.
replace (
exist (
fun τ₀ :
rtype₀ =>
wf_rtype₀ τ₀ =
true) (
Brand₀
b)
wfτ)
with (
Brand b);
trivial.
apply rtype_fequal;
simpl.
rewrite is_canon_brands_canon_brands;
trivial.
-
specialize (
fforeign ft).
erewrite rtype_ext.
eauto.
Defined.
Theorem rtype_ind (P : rtype -> Prop)
(ftop : P ⊤)
(fbottom : P ⊥)
(funit : P Unit)
(fnat : P Nat)
(fbool : P Bool)
(fstring : P String)
(fcol : forall t : rtype, P t -> P (Coll t))
(frec : forall (k:record_kind) (srl : list (string * rtype))
(pf:is_list_sorted ODT_lt_dec (domain srl) = true),
Forall (fun ab => P (snd ab)) srl -> P (Rec k srl pf))
(feither : forall (τl τr:rtype), P τl -> P τr -> P (Either τl τr))
(farrow : forall (τin τout:rtype), P τin -> P τout -> P (Arrow τin τout))
(fbrand : forall b, P (Brand b))
(fforeign : forall ft, P (Foreign ft)) :
forall (τ:rtype), P τ.
Proof.
Hint Constructors Forallt.
destruct τ
as [τ₀
wfτ].
revert wfτ.
unfold Top,
Bottom,
Unit,
Nat,
Bool,
String,
Coll,
Rec in *.
Ltac r_ext := solve [erewrite (rtype_ext); eauto]. *)
induction τ₀;
simpl;
intros.
-
erewrite rtype_ext;
eauto.
-
erewrite rtype_ext;
eauto.
-
erewrite rtype_ext;
eauto.
-
erewrite rtype_ext;
eauto.
-
erewrite rtype_ext;
eauto.
-
erewrite rtype_ext;
eauto.
-
specialize (
fcol _ (
IHτ₀
wfτ)).
erewrite rtype_ext;
eauto.
-
revert frec wfτ
H;
clear.
intros frec.
intros.
assert (
srlpf:{
srl:
list (
string *
rtype) | (
map
(
fun x :
string * {τ₀ :
rtype₀ |
wf_rtype₀ τ₀ =
true} =>
(
fst x,
proj1_sig (
snd x)))
srl) =
r}).
+
clear P H frec.
rewrite andb_true_iff,
forallb_forall in wfτ.
destruct wfτ
as [
iss fb].
revert iss fb.
induction r;
intros.
*
exists nil;
simpl;
trivial.
*
rewrite domain_cons,
is_list_sorted_cons in iss.
destruct iss as [
iss isa].
destruct IHr as [
srl srlpf];
intuition.
specialize (
fb a).
simpl in fb;
intuition.
exists ((
fst a ,(
exist _ (
snd a)
H1))::
srl).
destruct a;
simpl.
congruence.
+
destruct srlpf as [
srl srleq].
assert (
dreq:
domain srl =
domain r).
rewrite <-
srleq;
simpl;
unfold domain.
rewrite map_map.
simpl.
apply map_eq;
apply Forall_forall;
auto.
assert (
pfs:
is_list_sorted ODT_lt_dec (
domain srl) =
true).
rewrite dreq;
rewrite andb_true_iff in wfτ;
intuition.
assert (
pff:
Forall (
fun ab :
string *
rtype =>
P (
snd ab))
srl).
revert H.
rewrite <-
srleq.
clear.
induction srl;
simpl;
eauto.
destruct a;
destruct r;
simpl.
inversion 1;
subst;
eauto.
specialize (
frec k srl pfs pff).
destruct srleq.
erewrite (
rtype_ext);
eapply frec.
-
generalize wfτ;
intros.
rewrite andb_true_iff in wfτ.
destruct wfτ
as [
wfτ1
wfτ2].
specialize (
feither _ _ (
IHτ₀1
wfτ1) (
IHτ₀2
wfτ2)).
erewrite rtype_ext;
eauto.
-
generalize wfτ;
intros.
rewrite andb_true_iff in wfτ.
destruct wfτ
as [
wfτ1
wfτ2].
specialize (
farrow _ _ (
IHτ₀1
wfτ1) (
IHτ₀2
wfτ2)).
erewrite rtype_ext;
eauto.
-
revert fbrand b wfτ.
clear;
intros.
assert (
isc:
is_canon_brands brand_relation_brands b)
by match_destr_in wfτ.
replace (
exist (
fun τ₀ :
rtype₀ =>
wf_rtype₀ τ₀ =
true) (
Brand₀
b)
wfτ)
with (
Brand b);
trivial.
apply rtype_fequal;
simpl.
rewrite is_canon_brands_canon_brands;
trivial.
-
specialize (
fforeign ft).
erewrite rtype_ext.
eauto.
Defined.
Definition rtype_rec (P:rtype->Set) := rtype_rect P.
Lemma wf_rtype₀_kind_irrel k₁ k₂ l :
wf_rtype₀ (Rec₀ k₁ l) = wf_rtype₀ (Rec₀ k₂ l).
Proof.
reflexivity.
Qed.
Lemma wf_rtype₀_Brand₀ b :
wf_rtype₀ (Brand₀ b) = true ->
is_canon_brands brand_relation_brands b.
Proof.
simpl.
match_destr.
Qed.
Lemma brand_ext b pf : exist _ (Brand₀ b) pf = Brand b.
Proof.
Lemma wf_rtype₀_cons_tail {k} {a r} :
wf_rtype₀ (Rec₀ k (a::r)) = true ->
wf_rtype₀ (Rec₀ k r) = true.
Proof.
Lemma wf_rtype₀_cons_lt {k s r srl s' r'} :
wf_rtype₀ (Rec₀ k ((s, r) :: srl)) = true ->
lookup string_dec srl s' = Some r' ->
ODT_lt s s'.
Proof.
Lemma wf_rtype₀_cons_nin {k s r srl} :
wf_rtype₀ (Rec₀ k ((s, r) :: srl)) = true -> lookup string_dec srl s = None.
Proof.
Lemma wf_rtype₀_cons_wf {k s r srl} :
wf_rtype₀ (Rec₀ k ((s, r) :: srl)) = true ->
wf_rtype₀ r = true.
Proof.
End well_formed_rtypes.
Notation "⊥" := Bottom.
Notation "⊤" := Top.
Ltac equalizer :=
repeat match goal with
| [H:(@eq rtype₀ (proj1_sig _) (proj1_sig _)) |- _] => apply rtype_fequal in H
| [H: map
(fun x : string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true} =>
(fst x, proj1_sig (snd x))) _ =
map
(fun x' : string * {τ₀' : rtype₀ | wf_rtype₀ τ₀' = true} =>
(fst x', proj1_sig (snd x'))) _ |- _] => apply map_rtype_fequal in H
end.
Lemma to_Rec {ftype:foreign_type} {br:brand_relation} k l pf :
exists pf2,
exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true)
(Rec₀
k (map
(fun x : string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true} =>
(fst x, proj1_sig (snd x))) l)) pf
= Rec k l pf2.
Proof.
unfold Rec.
generalize pf.
intros pf'.
simpl in pf.
rewrite andb_true_iff in pf.
unfold domain in pf;
rewrite map_map in pf;
simpl in pf.
destruct pf as [
isl ?].
exists isl.
apply rtype_ext.
Qed.
Lemma from_Rec₀ {ftype:foreign_type} {br:brand_relation} {k} (l:list (string * rtype₀)) (pf : wf_rtype₀ (Rec₀ k l) = true) :
{l' | exists pf',
l =
(map
(fun x : string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true} =>
(fst x, proj1_sig (snd x))) l')
/\ Rec k l' pf' = exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true) (Rec₀ k l) pf}.
Proof.
Lemma lookup_map_some {ftype:foreign_type} {br:brand_relation} rl2 s x :
lookup string_dec rl2 s = Some x <->
lookup string_dec
(map
(fun x : string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true} =>
(fst x, proj1_sig (snd x))) rl2) s = Some (proj1_sig x).
Proof.
induction rl2;
simpl; [
split;
discriminate|].
destruct a;
simpl.
destruct (
string_dec s s0);
auto.
subst.
split;
inversion 1;
subst;
auto.
equalizer.
subst;
auto.
Qed.
Lemma lookup_map_some' {ftype:foreign_type} {br:brand_relation} rl2 s x pf :
lookup string_dec rl2 s = Some (exist _ x pf) <->
lookup string_dec
(map
(fun x : string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true} =>
(fst x, proj1_sig (snd x))) rl2) s = Some x.
Proof.
Lemma lookup_map_some_ex {ftype:foreign_type} {br:brand_relation}
(rl2 : list (string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true}))
(s : string) (x : rtype₀) :
(exists pf, lookup string_dec rl2 s =
Some (exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true) x pf)) <->
lookup string_dec
(map
(fun x0 : string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true} =>
(fst x0, proj1_sig (snd x0))) rl2) s = Some x.
Proof.
induction rl2;
simpl;
split.
-
intros [??];
discriminate.
-
discriminate.
-
intros [??].
destruct a;
simpl.
destruct (
string_dec s s0);
auto.
+
inversion H.
subst.
simpl;
trivial.
+
apply IHrl2.
eauto.
-
destruct a;
simpl.
destruct (
string_dec s s0);
auto.
+
inversion 1.
subst.
destruct s1.
eauto.
+
apply IHrl2.
Qed.
Lemma lookup_map_none {ftype:foreign_type} {br:brand_relation} rl2 s :
lookup string_dec rl2 s = None <->
lookup string_dec
(map
(fun x : string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true} =>
(fst x, proj1_sig (snd x))) rl2) s = None.
Proof.
induction rl2;
simpl; [
intuition|].
destruct a;
simpl.
destruct (
string_dec s s0);
subst;
intuition discriminate.
Qed.
End RType.
Section recmaybe.
Context {ftype:foreign_type}.
Context {br:brand_relation}.
Definition RecMaybe (k:record_kind) (lsr:list (string*rtype)) : option rtype.
case_eq (is_list_sorted ODT_lt_dec (domain lsr)); intros pf.
- exact (Some (Rec k lsr pf)).
- exact None.
Defined.
Lemma RecMaybe_some_pf_helper (z:bool) τ f :
(if z as b
return
(z = b -> option rtype)
then
fun pf : z = true =>
Some (f pf)
else
fun _ : z = false => None)
eq_refl = Some τ ->
{pf : z = true |
τ = f pf}.
Proof.
destruct z; inversion 1; eauto.
Qed.
Lemma RecMaybe_some_pf {k τ₀ τ} :
RecMaybe k τ₀ = Some τ ->
{pf | τ = Rec k τ₀ pf}.
Proof.
Lemma RecMaybe_pf_some_helper (z:bool) f pf :
z = true ->
(if z as b
return
(z = b -> option rtype)
then
fun pf : z = true =>
f pf
else
fun _ : z = false => None)
eq_refl = f pf.
Proof.
destruct z;
inversion 1;
eauto.
f_equal.
apply UIP_dec.
apply bool_dec.
Qed.
Lemma RecMaybe_pf_some k l pf :
RecMaybe k l = Some (Rec k l pf).
Proof.
Lemma RecMaybe_nil k : RecMaybe k nil = Some (Rec k nil eq_refl).
Proof.
End recmaybe.
Section other.
Context {ftype:foreign_type}.
Context {br:brand_relation}.
Lemma Rec_inv {k k' x pf1 y pf2} : Rec k x pf1 = Rec k' y pf2 -> x = y.
Proof.
Lemma Rec_kind_inv {k k' x pf1 y pf2} : Rec k x pf1 = Rec k' y pf2 -> k = k'.
Proof.
intros.
inversion H.
trivial.
Qed.
Lemma Rec_pr_irrel k l1 pf1 pf2 :
Rec k l1 pf1 = Rec k l1 pf2.
Proof.
Lemma Rec_rewrite {l1 l2} k pf1 pf2 :
l1 = l2 ->
Rec k l1 pf1 = Rec k l2 pf2.
Proof.
Lemma Rec_kind_rewrite k1 k2 l pf :
k1 = k2 ->
Rec k1 l pf = Rec k2 l pf.
Proof.
congruence.
Qed.
Lemma Coll_right_inv (τ₁ τ₂:rtype) :
(proj1_sig τ₁) = Coll₀ (proj1_sig τ₂) <-> τ₁ = Coll τ₂.
Proof.
split.
intros.
-
destruct τ₁;
simpl in *.
destruct τ₂;
simpl in *.
destruct x;
try discriminate;
simpl in *.
inversion H.
subst.
clear H.
assert (
Coll (
exist (
fun τ₀ :
rtype₀ =>
wf_rtype₀ τ₀ =
true)
x0 e0)
=
Coll (
exist (
fun τ₀ :
rtype₀ =>
wf_rtype₀ τ₀ =
true)
x0 e)).
apply rtype_fequal.
simpl.
reflexivity.
rewrite H.
reflexivity.
-
intros.
rewrite H.
reflexivity.
Defined.
Lemma Coll_inside (τ₁:rtype) (τ₂₀:rtype₀) :
(proj1_sig τ₁) = Coll₀ τ₂₀ ->
exists τ₂:rtype, proj1_sig τ₂ = τ₂₀.
Proof.
intros.
destruct τ₁.
simpl in *.
destruct x;
try congruence.
simpl in e.
exists (
exist (
fun τ₀ :
rtype₀ =>
wf_rtype₀ τ₀ =
true)
x e).
simpl.
inversion H;
reflexivity.
Defined.
Lemma map_rtype_nil x0:
map (fun x2 : string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true} =>
(fst x2, proj1_sig (snd x2))) x0 = nil <-> x0 = nil.
Proof.
split; intros.
- induction x0; try reflexivity; simpl in *.
congruence.
- rewrite H; reflexivity.
Qed.
Lemma Rec₀_eq_proj1_Rec {τ k l} :
proj1_sig τ =
Rec₀
k (map
(fun x : string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true} =>
(fst x, proj1_sig (snd x))) l) ->
exists pf, τ = Rec k l pf.
Proof.
destruct τ;
simpl;
intros;
subst.
apply to_Rec.
Qed.
Lemma Nat_canon pf:
(exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true) Nat₀ pf) = Nat.
Proof.
Lemma String_canon pf:
(exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true) String₀ pf) = String.
Proof.
Lemma Coll_canon x pf:
(exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true) (Coll₀ x) pf) = Coll (exist _ x pf).
Proof.
Lemma Brand_canon x pf:
(exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true) (Brand₀ x) pf) = Brand x.
Proof.
Lemma Foreign_canon ft pf:
(exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true) (Foreign₀ ft) pf) = Foreign ft.
Proof.
Lemma Either₀_wf_inv {l r} :
wf_rtype₀ (Either₀ l r) = true ->
wf_rtype₀ l = true /\ wf_rtype₀ r = true.
Proof.
Lemma Either_canon l r pf pfl pfr:
(exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true) (Either₀ l r) pf) = Either (exist _ l pfl) (exist _ r pfr).
Proof.
Lemma Either_canon_ex l r pf:
exists pfl pfr,
(exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true) (Either₀ l r) pf) = Either (exist _ l pfl) (exist _ r pfr).
Proof.
simpl in pf.
destruct (
Either₀
_wf_inv pf)
as [
pfl pfr].
exists pfl;
exists pfr.
apply Either_canon.
Qed.
Lemma Arrow₀_wf_inv {l r} :
wf_rtype₀ (Arrow₀ l r) = true ->
wf_rtype₀ l = true /\ wf_rtype₀ r = true.
Proof.
Lemma Arrow_canon l r pf pfl pfr:
(exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true) (Arrow₀ l r) pf) = Arrow (exist _ l pfl) (exist _ r pfr).
Proof.
Lemma Arrow_canon_ex l r pf:
exists pfl pfr,
(exist (fun τ₀ : rtype₀ => wf_rtype₀ τ₀ = true) (Arrow₀ l r) pf) = Arrow (exist _ l pfl) (exist _ r pfr).
Proof.
simpl in pf.
destruct (
Arrow₀
_wf_inv pf)
as [
pfl pfr].
exists pfl;
exists pfr.
apply Arrow_canon.
Qed.
Lemma wf_rtype₀_Rec_In {k srl} :
wf_rtype₀ (Rec₀ k srl) = true ->
forall a b, In (a,b) srl -> wf_rtype₀ b = true.
Proof.
Lemma wf_rec_pf_sublist {B} {l l'} :
is_list_sorted ODT_lt_dec (@domain _ B l) = true ->
sublist l' l ->
is_list_sorted ODT_lt_dec (domain l') = true.
Proof.
Lemma lift_Rec₀_injective {k₁ k₂ l1 l2} : lift (Rec₀ k₁) l1 = lift (Rec₀ k₂) l2 -> l1 = l2.
Proof.
destruct l1; destruct l2; simpl; trivial; inversion 1; trivial.
Qed.
Lemma some_lift_Rec₀ {k₁ k₂ x y} :
lift (Rec₀ k₁) x = Some (Rec₀ k₂ y) ->
x = Some y.
Proof.
intros eq.
apply some_lift in eq.
destruct eq;
subst.
inversion e0;
congruence.
Qed.
Lemma lift_Coll₀_injective {l1 l2} : lift Coll₀ l1 = lift Coll₀ l2 -> l1 = l2.
Proof.
Lemma some_lift_Coll₀ {x y} :
lift Coll₀ x = Some (Coll₀ y) ->
x = Some y.
Proof.
intros eq.
apply some_lift in eq.
destruct eq;
subst.
inversion e0;
congruence.
Qed.
Lemma lift_Coll_injective {l1 l2} : lift Coll l1 = lift Coll l2 -> l1 = l2.
Proof.
Lemma some_lift_Coll {x y} :
lift Coll x = Some (Coll y) ->
x = Some y.
Proof.
intros eq.
apply some_lift in eq.
destruct eq;
subst.
inversion e0.
f_equal.
apply rtype_fequal;
congruence.
Qed.
Lemma lift_col₀_some_col₀ {x y} :
lift Coll₀ x = Some y ->
{z | y = Coll₀ z}.
Proof.
destruct x; simpl; inversion 1; eauto.
Qed.
Lemma lift_col_some_col {x y} :
lift Coll x = Some y ->
{z | y = Coll z}.
Proof.
destruct x; simpl; inversion 1; eauto.
Qed.
Lemma lift_rec₀_some_rec₀ {k x y} :
lift (Rec₀ k) x = Some y ->
{z | y = Rec₀ k z}.
Proof.
destruct x; simpl; inversion 1; eauto.
Qed.
Definition isTop (τ:rtype) : bool.
destruct τ. destruct x; [ | exact true | .. ]; exact false.
Defined.
Lemma istop τ : {τ = Top} + {isTop τ = false}.
Proof.
End other.
Notation "⊥₀" := Bottom₀.
Notation "⊤₀" := Top₀.
Notation "⊥" := Bottom.
Notation "⊤" := Top.
Ltac rtype_equalizer :=
repeat match goal with
| [H:(@eq rtype₀ (proj1_sig _) (proj1_sig _)) |- _] => apply rtype_fequal in H
| [H: map
(fun x : string * {τ₀ : rtype₀ | wf_rtype₀ τ₀ = true} =>
(fst x, proj1_sig (snd x))) _ =
map
(fun x' : string * {τ₀' : rtype₀ | wf_rtype₀ τ₀' = true} =>
(fst x', proj1_sig (snd x'))) _ |- _] => apply map_rtype_fequal in H
end.
Ltac r_ext := solve [erewrite (rtype_ext); eauto].
Ltac rtype_lift_simpler :=
match goal with
| [ |- lift ?f ?x = Some (?f ?y)] => apply (lift_some y); [|reflexivity]
| [ |- lift ?f ?x = None] => apply lift_none
| [H:lift ?f ?x = None |- _] => apply none_lift in H
| [H: lift (Rec₀ _) ?l1 = Some (Rec₀ _ ?l2) |- _ ] => apply some_lift_Rec₀ in H
| [H: lift (Rec₀ _) ?l1 = lift (Rec₀ _) ?l2 |- _ ] => apply lift_Rec₀_injective in H
| [H: lift Coll₀ ?l1 = Some (Coll₀ ?l2) |- _ ] => apply some_lift_Coll₀ in H
| [H: lift Coll₀ ?l1 = lift Coll₀ ?l2 |- _ ] => apply lift_Coll₀_injective in H
| [H: lift Coll ?l1 = Some (Coll ?l2) |- _ ] => apply some_lift_Coll in H
| [H: lift Coll ?l1 = lift Coll ?l2 |- _ ] => apply lift_Coll_injective in H
end.
Cases tactic for use with the derived rtypeRectt induction principle
Tactic Notation "rtype_rect_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "Top"%string
| Case_aux c "Bottom"%string
| Case_aux c "Unit"%string
| Case_aux c "Nat"%string
| Case_aux c "Bool"%string
| Case_aux c "String"%string
| Case_aux c "Coll"%string
| Case_aux c "Rec"%string
| Case_aux c "Either"%string
| Case_aux c "Arrow"%string
| Case_aux c "Brand"%string
| Case_aux c "Foreign"%string
].