Module TBrandModelProp
Section
TBrandModelProp
.
Require
Import
String
.
Require
Import
List
Permutation
.
Require
Import
Sumbool
.
Require
Import
Arith
.
Require
Import
Bool
.
Require
Import
Morphisms
.
Require
Import
Basics
.
Require
Import
Utils
.
Require
Import
ForeignType
.
Require
Import
RType
.
Require
Import
RSubtype
.
Require
Export
TBrandModel
.
Require
Import
RSubtypeProp
.
Require
Import
RTypeLattice
RTypeMeetJoin
.
Require
Import
RBag
.
Context
{
ftype
:
foreign_type
}.
Context
{
m
:
brand_model
}.
Lemma
sub_brand_in
{
b0
b
τ
brand
} :
sub_brand
brand_relation_brands
b0
b
->
In
(
b
, τ
brand
)
brand_context_types
->
exists
τ₂,
In
(
b0
, τ₂)
brand_context_types
/\
subtype
τ₂ τ
brand
.
Proof.
unfold
sub_brand
.
destruct
1;
intros
;
subst
.
-
exists
τ
brand
;
intuition
.
-
intros
.
generalize
(@
brand_model_domain
_
_
_
(
in_dom
H
));
intros
inn
.
apply
in_domain_in
in
inn
.
destruct
inn
as
[?
inn
].
destruct
(@
brand_model_subtype
_
_
_
_
_
H
inn
)
as
[?[??]].
generalize
(
is_list_sorted_NoDup
_
_
(
brand_context_types_sorted
));
intros
nd
.
generalize
(
nodup_in_eq
nd
H0
H1
);
intros
;
subst
.
eauto
.
Qed.
Definition
brands_type_list
(
b
:
brands
) : (
list
rtype
)
:=
flat_map
(
fun
bb
=>
match
lookup
string_dec
brand_context_types
bb
with
|
Some
τ => (τ::
nil
)
|
None
=>
nil
end
)
b
.
Definition
brands_type
(
b
:
brands
) :
rtype
:=
fold_left
meet
(
brands_type_list
b
) ⊤ .
Lemma
brands_type_singleton
(
bb
:
brand
)
:
brands_type
(
singleton
bb
) =
match
lookup
string_dec
brand_context_types
bb
with
|
Some
τ => τ
|
None
=> ⊤
end
.
Proof.
unfold
brands_type
,
singleton
.
simpl
.
match_destr
;
simpl
.
autorewrite
with
rtype_meet
.
trivial
.
Qed.
Lemma
brands_type_list_app
b1
b2
:
brands_type_list
(
b1
++
b2
) =
brands_type_list
b1
++
brands_type_list
b2
.
Proof.
unfold
brands_type_list
.
apply
flat_map_app
.
Qed.
Lemma
brands_type_alt
(
b
:
brands
) :
brands_type
b
=
fold_right
meet
⊤ (
brands_type_list
b
).
Proof.
apply
fold_symmetric
.
-
intros
.
rewrite
meet_associative
;
trivial
.
-
intros
.
rewrite
meet_commutative
;
trivial
.
Qed.
Global
Instance
brands_type_sub_proper
:
Proper
(
sub_brands
brand_relation_brands
==>
subtype
)
brands_type
.
Proof.
unfold
Proper
,
respectful
.
intros
x
y
sub
.
repeat
rewrite
brands_type_alt
.
revert
x
sub
.
unfold
sub_brands
.
induction
y
;
simpl
.
intros
.
-
apply
STop
.
-
intros
x
inn
.
rewrite
fold_right_app
.
specialize
(
IHy
x
).
cut_to
IHy
.
+
match_case
;
simpl
;
intros
.
specialize
(
inn
a
).
cut_to
inn
; [|
intuition
].
destruct
inn
as
[
b
[
inb
subb
]].
destruct
(
sub_brand_in
subb
(
lookup_in
_
_
H
))
as
[
r2
[
in2
sub2
]].
assert
(
eqq
:
fold_right
rtype_meet
⊤ (
brands_type_list
x
)=
fold_right
rtype_meet
⊤ (
r2
::(
brands_type_list
x
))).
apply
fold_right_equivlist
.
*
intros
;
rewrite
rtype_meet_associative
;
reflexivity
.
*
intros
;
rewrite
rtype_meet_commutative
;
reflexivity
.
*
intros
;
rewrite
rtype_meet_idempotent
;
reflexivity
.
* {
assert
(
eqq2
:
equivlist
(
brands_type_list
x
) (
brands_type_list
(
b
::
x
))).
-
destruct
(
in_split
_
_
inb
)
as
[
t1
[
t2
teq
]].
rewrite
teq
.
simpl
.
repeat
rewrite
brands_type_list_app
.
simpl
.
match_destr
;
simpl
;
try
reflexivity
.
assert
(
perm
:
Permutation
(
brands_type_list
t1
++
r0
::
brands_type_list
t2
) (
r0
::
brands_type_list
t1
++
brands_type_list
t2
))
by
(
rewrite
Permutation_middle
;
reflexivity
).
rewrite
perm
.
apply
equivlist_incls
;
split
;
intros
?;
simpl
;
intros
inn
;
intuition
.
-
simpl
in
eqq2
.
eapply
(
in_lookup_nodup
string_dec
)
in
in2
.
+
rewrite
in2
in
eqq2
.
simpl
in
eqq2
;
trivial
.
+
eapply
is_list_sorted_NoDup_strlt
.
eapply
brand_context_types_sorted
.
}
*
rewrite
eqq
.
simpl
.
apply
(
meet_leq_proper
(
olattice
:=
rtype_olattice
));
auto
.
+
intuition
.
Qed.
Lemma
brands_type_sub_part
bb
τ
b
:
lookup
string_dec
brand_context_types
bb
=
Some
τ ->
In
bb
b
->
brands_type
b
<: τ.
Proof.
intros
look
inn
.
replace
τ
with
(
brands_type
(
singleton
bb
)).
-
apply
brands_type_sub_proper
.
unfold
sub_brands
,
sub_brand
,
singleton
;
simpl
.
intuition
;
subst
.
eauto
.
-
rewrite
brands_type_singleton
,
look
;
trivial
.
Qed.
Lemma
brands_type_of_canon
b
:
brands_type
(
canon_brands
brand_relation_brands
b
) =
brands_type
b
.
Proof.
destruct
(
canon_brands_equiv
b
).
apply
antisymmetry
;
apply
brands_type_sub_proper
;
trivial
.
Qed.
End
TBrandModelProp
.