Module TBrandContext
Section
TBrandContext
.
Require
Import
String
.
Require
Import
List
.
Require
Import
ListSet
.
Require
Import
Sumbool
.
Require
Import
Arith
.
Require
Import
Bool
.
Require
Import
Morphisms
.
Require
Import
Basics
.
Require
Import
EquivDec
.
Require
Import
Eqdep_dec
.
Require
Import
Utils
.
Require
Import
ForeignType
.
Require
Import
RType
.
Require
Import
BrandRelation
.
Implicitly, everything derives from Any
Definition
Any
{
ftype
:
foreign_type
} {
br
:
brand_relation
} :=
Brand
nil
.
Section
Brand_Context
.
Context
{
ftype
:
foreign_type
}.
Context
{
br
:
brand_relation
}.
Represents a mapping from brands to types
Class
brand_context
:=
mkBrand_context
{
brand_context_types
:
list
(
string
*
rtype
);
brand_context_types_sorted
:
is_list_sorted
ODT_lt_dec
(
domain
brand_context_types
) =
true
}.
Lemma
brand_context_nodup
{
m
:
brand_context
} :
NoDup
(
domain
brand_context_types
).
Proof.
eapply
is_list_sorted_NoDup
.
-
eapply
StringOrder.lt_strorder
.
-
apply
brand_context_types_sorted
.
Qed.
Lemma
brand_context_ext
m
pf1
pf1
':
mkBrand_context
m
pf1
=
mkBrand_context
m
pf1
'.
Proof.
f_equal
.
-
apply
UIP_dec
.
apply
bool_dec
.
Defined.
Lemma
brand_context_fequal
{
m
₁
m
₂}:
@
brand_context_types
m
₁ = @
brand_context_types
m
₂ ->
m
₁ =
m
₂.
Proof.
destruct
m
₁;
destruct
m
₂;
simpl
;
intros
;
subst
.
apply
brand_context_ext
.
Qed.
Definition
brand_context_Rec
(
m
:
brand_context
) :=
Rec
Open
_
(
brand_context_types_sorted
).
Lemma
brand_context_Rec_inj
(
m1
m2
:
brand_context
) :
brand_context_Rec
m1
=
brand_context_Rec
m2
->
m1
=
m2
.
Proof.
inversion
1;
rtype_equalizer
;
subst
.
apply
brand_context_fequal
;
trivial
.
Qed.
End
Brand_Context
.
End
TBrandContext
.