Qcert.DNNRC.Typing.TDNNRCSub
Section TDNNRCSub.
Context {m:basic_model}.
Section typ.
Inductive dnnrc_type_sub {A plug_type:Set}
{plug:AlgPlug plug_type} {tplug: TAlgPlug plug_type} :
tdbindings → dnnrc A plug_type → drtype → Prop :=
| TDNNRCVar {τ} tenv v : ∀ (a:A), lookup equiv_dec tenv v = Some τ → dnnrc_type_sub tenv (DNNRCVar a v) τ
| TDNNRCConst {τ} tenv c : ∀ (a:A), data_type (normalize_data brand_relation_brands c) τ → dnnrc_type_sub tenv (DNNRCConst a c) (Tlocal τ)
| TDNNRCBinop {τ₁ τ₂ τ} tenv b e1 e2 :
∀ (a:A),
binOp_type b τ₁ τ₂ τ →
dnnrc_type_sub tenv e1 (Tlocal τ₁) →
dnnrc_type_sub tenv e2 (Tlocal τ₂) →
dnnrc_type_sub tenv (DNNRCBinop a b e1 e2) (Tlocal τ)
| TDNNRCUnop {τ₁ τ} tenv u e1 :
∀ (a:A),
unaryOp_type u τ₁ τ →
dnnrc_type_sub tenv e1 (Tlocal τ₁) →
dnnrc_type_sub tenv (DNNRCUnop a u e1) (Tlocal τ)
| TDNNRCLet {τ₁ τ₂} v tenv e1 e2 :
∀ (a:A),
dnnrc_type_sub tenv e1 τ₁ →
dnnrc_type_sub ((v,τ₁)::tenv) e2 τ₂ →
dnnrc_type_sub tenv (DNNRCLet a v e1 e2) τ₂
| TDNRCForLocal {τ₁ τ₂} v tenv e1 e2 :
∀ (a:A),
dnnrc_type_sub tenv e1 (Tlocal (Coll τ₁)) →
dnnrc_type_sub ((v,(Tlocal τ₁))::tenv) e2 (Tlocal τ₂) →
dnnrc_type_sub tenv (DNNRCFor a v e1 e2) (Tlocal (Coll τ₂))
| TDNRCForDist {τ₁ τ₂} v tenv e1 e2 :
∀ (a:A),
dnnrc_type_sub tenv e1 (Tdistr τ₁) →
dnnrc_type_sub ((v,(Tlocal τ₁))::tenv) e2 (Tlocal τ₂) →
dnnrc_type_sub tenv (DNNRCFor a v e1 e2) (Tdistr τ₂)
| TDNRCIf {τ} tenv e1 e2 e3 :
∀ (a:A),
dnnrc_type_sub tenv e1 (Tlocal Bool) →
dnnrc_type_sub tenv e2 τ →
dnnrc_type_sub tenv e3 τ →
dnnrc_type_sub tenv (DNNRCIf a e1 e2 e3) τ
| TDNNRCEither {τ τl τr} tenv ed xl el xr er :
∀ (a:A),
dnnrc_type_sub tenv ed (Tlocal (Either τl τr)) →
dnnrc_type_sub ((xl,(Tlocal τl))::tenv) el τ →
dnnrc_type_sub ((xr,(Tlocal τr))::tenv) er τ →
dnnrc_type_sub tenv (DNNRCEither a ed xl el xr er) τ
| TDNNRCCollect {τ} tenv e :
∀ (a:A),
dnnrc_type_sub tenv e (Tdistr τ) →
dnnrc_type_sub tenv (DNNRCCollect a e) (Tlocal (Coll τ))
| TDNNRCDispatch {τ} tenv e :
∀ (a:A),
dnnrc_type_sub tenv e (Tlocal (Coll τ)) →
dnnrc_type_sub tenv (DNNRCDispatch a e) (Tdistr τ)
| TDNNRCAlg {τout} tenv tbindings op nl :
∀ (a:A),
Forall2 (fun n τ ⇒ fst n = fst τ
∧ dnnrc_type_sub tenv (snd n) (Tdistr (snd τ)))
nl tbindings →
plug_typing op tbindings (Coll τout) →
dnnrc_type_sub tenv (DNNRCAlg a op nl) (Tdistr τout)
| TDNNRCSubsumption {τenv τout} τenv' τout' e:
tdbindings_sub τenv' τenv →
drtype_sub τout τout' →
dnnrc_type_sub τenv e τout →
dnnrc_type_sub τenv' e τout'
.
Global Instance dnnrc_type_sub_proper {A plug_type:Set} {plug:AlgPlug plug_type} {tplug: TAlgPlug plug_type} :
Proper (tdbindings_sub --> eq ==> drtype_sub ==> impl) (dnnrc_type_sub (A:=A)).
Global Instance dbindings_type_proper :
Proper (eq ==> tdbindings_sub ==> impl) dbindings_type.
End typ.
Section lift.
Lemma dnnrc_type_to_dnnrc_type_sub {A} (plug_type:Set) (plug:AlgPlug plug_type) {tplug:TAlgPlug plug_type} {τ} (env:dbindings) (tenv:tdbindings) (e:dnnrc A plug_type) :
dnnrc_type tenv e τ →
dnnrc_type_sub tenv e τ.
End lift.
Main lemma for the type correctness of DNNNRC
Theorem typed_dnnrc_yields_typed_data {A} {plug_type:Set} (plug:AlgPlug plug_type) {tplug:TAlgPlug plug_type} {τ} (env:dbindings) (tenv:tdbindings) (e:dnnrc A plug_type) :
dbindings_type env tenv →
dnnrc_type_sub tenv e τ →
(∃ x, (dnnrc_eval brand_relation_brands env e) = Some x ∧ (ddata_type x τ)).
End TDNNRCSub.
dbindings_type env tenv →
dnnrc_type_sub tenv e τ →
(∃ x, (dnnrc_eval brand_relation_brands env e) = Some x ∧ (ddata_type x τ)).
End TDNNRCSub.