Qcert.DNNRC.Typing.TDNNRC




  Section TDNNRC.

    Context {m:basic_model}.
    Section tplug.

      Class TAlgPlug {plug_type:Set} {plug:AlgPlug plug_type} :=
        mkTAlgPlug {
            plug_typing : plug_type tbindings rtype Prop;
          }.

    End tplug.


Typing rules for NNRC
    Section typ.

      Fixpoint tcombine (l:list string) (l':list drtype) {struct l} : option tbindings :=
      match l with
      | []Some []
      | x :: tl
        match l' with
        | []Some []
        | (Tlocal _) :: _None
        | (Tdistr y) :: tl'
          match tcombine tl tl' with
          | Some tl''Some ((x,y) :: tl'')
          | NoneNone
          end
        end
      end.

      Inductive dnnrc_type `{tplug: TAlgPlug} {A} : tdbindings dnnrc A plug_type drtype Prop :=
      | TDNNRCVar {τ} tenv v : (a:A), lookup equiv_dec tenv v = Some τ dnnrc_type tenv (DNNRCVar a v) τ
      | TDNNRCConst {τ} tenv c : (a:A), data_type (normalize_data brand_relation_brands c) τ dnnrc_type tenv (DNNRCConst a c) (Tlocal τ)
      | TDNNRCBinop τ τ} tenv b e1 e2 :
           (a:A),
            binOp_type b τ τ τ
            dnnrc_type tenv e1 (Tlocal τ)
            dnnrc_type tenv e2 (Tlocal τ)
            dnnrc_type tenv (DNNRCBinop a b e1 e2) (Tlocal τ)
      | TDNNRCUnop τ} tenv u e1 :
           (a:A),
            unaryOp_type u τ τ
            dnnrc_type tenv e1 (Tlocal τ)
            dnnrc_type tenv (DNNRCUnop a u e1) (Tlocal τ)
      | TDNNRCLet τ} v tenv e1 e2 :
           (a:A),
            dnnrc_type tenv e1 τ
            dnnrc_type ((v,τ)::tenv) e2 τ
            dnnrc_type tenv (DNNRCLet a v e1 e2) τ
      | TDNNRCForLocal τ} v tenv e1 e2 :
           (a:A),
            dnnrc_type tenv e1 (Tlocal (Coll τ))
            dnnrc_type ((v,(Tlocal τ))::tenv) e2 (Tlocal τ)
            dnnrc_type tenv (DNNRCFor a v e1 e2) (Tlocal (Coll τ))
      | TDNNRCForDist τ} v tenv e1 e2 :
           (a:A),
            dnnrc_type tenv e1 (Tdistr τ)
            dnnrc_type ((v,(Tlocal τ))::tenv) e2 (Tlocal τ)
            dnnrc_type tenv (DNNRCFor a v e1 e2) (Tdistr τ)
      | TDNNRCIf {τ} tenv e1 e2 e3 :
           (a:A),
            dnnrc_type tenv e1 (Tlocal Bool)
            dnnrc_type tenv e2 τ
            dnnrc_type tenv e3 τ
            dnnrc_type tenv (DNNRCIf a e1 e2 e3) τ
      | TDNNRCEither {τ τl τr} tenv ed xl el xr er :
           (a:A),
            dnnrc_type tenv ed (Tlocal (Either τl τr))
            dnnrc_type ((xl,(Tlocal τl))::tenv) el τ
            dnnrc_type ((xr,(Tlocal τr))::tenv) er τ
            dnnrc_type tenv (DNNRCEither a ed xl el xr er) τ
      | TDNNRCCollect {τ} tenv e :
           (a:A),
            dnnrc_type tenv e (Tdistr τ)
            dnnrc_type tenv (DNNRCCollect a e) (Tlocal (Coll τ))
      | TDNNRCDispatch {τ} tenv e :
           (a:A),
            dnnrc_type tenv e (Tlocal (Coll τ))
            dnnrc_type tenv (DNNRCDispatch a e) (Tdistr τ)
      
      | TDNNRCAlgout} tenv tbindings op nl :
         (a:A),
          Forall2 (fun n τ ⇒ fst n = fst τ
                               dnnrc_type tenv (snd n) (Tdistr (snd τ)))
                  nl tbindings
           plug_typing op tbindings (Coll τout)
           dnnrc_type tenv (DNNRCAlg a op nl) (Tdistr τout)
      .


  End typ.

Main lemma for the type correctness of DNNRC
    Theorem typed_dnnrc_yields_typed_data {A:Set} {plug_type:Set} {τ} `{tplug:TAlgPlug plug_type} (env:dbindings) (tenv:tdbindings) (e:dnnrc A plug_type) :
    dbindings_type env tenv
    dnnrc_type tenv e τ
    ( x, (dnnrc_eval brand_relation_brands env e) = Some x (ddata_type x τ)).

End TDNNRC.