Module CAMPtoNRAEnv
Section
CAMPtoNRAEnv
.
Require
Import
String
.
Require
Import
List
.
Require
Import
Utils
.
Require
Import
BasicRuntime
.
Require
Import
NRARuntime
.
Require
Import
NRAEnvRuntime
.
Require
Import
CAMPRuntime
.
Require
Import
CAMPtoNRA
.
Context
{
fruntime
:
foreign_runtime
}.
Functions used to map input/ouput values between CAMP and NRA
Definition
nraenv_fail
:=
NRAEnvConst
(
dcoll
nil
).
Definition
nraenv_match
op
:=
NRAEnvUnop
AColl
op
.
Translation from CAMP to EnvNRA
Fixpoint
nraenv_of_camp
(
p
:
camp
) :
nraenv
:=
match
p
with
|
pconst
d
' =>
nraenv_match
(
NRAEnvConst
d
')
|
punop
uop
p
₁ =>
NRAEnvMap
(
NRAEnvUnop
uop
NRAEnvID
) (
nraenv_of_camp
p
₁)
|
pbinop
bop
p
₁
p
₂ =>
NRAEnvMap
(
NRAEnvBinop
bop
(
NRAEnvUnop
(
ADot
"
a1
")
NRAEnvID
) (
NRAEnvUnop
(
ADot
"
a2
")
NRAEnvID
))
(
NRAEnvProduct
(
NRAEnvMap
(
NRAEnvUnop
(
ARec
"
a1
")
NRAEnvID
) (
nraenv_of_camp
p
₁))
(
NRAEnvMap
(
NRAEnvUnop
(
ARec
"
a2
")
NRAEnvID
) (
nraenv_of_camp
p
₂)))
|
pmap
p
₁ =>
nraenv_match
(
NRAEnvUnop
AFlatten
(
NRAEnvMap
(
nraenv_of_camp
p
₁)
NRAEnvID
))
|
passert
p
₁ =>
NRAEnvMap
(
NRAEnvConst
(
drec
nil
)) (
NRAEnvSelect
NRAEnvID
(
nraenv_of_camp
p
₁))
|
porElse
p
₁
p
₂ =>
NRAEnvDefault
(
nraenv_of_camp
p
₁) (
nraenv_of_camp
p
₂)
|
pit
=>
nraenv_match
NRAEnvID
|
pletIt
p
₁
p
₂ =>
NRAEnvUnop
AFlatten
(
NRAEnvMap
(
nraenv_of_camp
p
₂)
(
nraenv_of_camp
p
₁))
|
pgetConstant
s
=>
nraenv_match
(
NRAEnvGetConstant
s
)
|
penv
=>
nraenv_match
NRAEnvEnv
|
pletEnv
p
₁
p
₂ =>
NRAEnvUnop
AFlatten
(
NRAEnvAppEnv
(
NRAEnvMapEnv
(
nraenv_of_camp
p
₂))
(
NRAEnvUnop
AFlatten
(
NRAEnvMap
(
NRAEnvBinop
AMergeConcat
NRAEnvEnv
NRAEnvID
) (
nraenv_of_camp
p
₁))))
|
pleft
=>
NRAEnvEither
(
nraenv_match
NRAEnvID
) (
nraenv_fail
)
|
pright
=>
NRAEnvEither
(
nraenv_fail
) (
nraenv_match
NRAEnvID
)
end
.
top level version sets up the appropriate input (with an empty context)
Definition
nraenv_of_camp_top
p
:=
NRAEnvUnop
AFlatten
(
NRAEnvMap
(
nraenv_of_camp
p
) (
NRAEnvUnop
AColl
NRAEnvID
)).
Theorem 4.2: lemma of translation correctness for patterns
Require
Import
CAMPtocNRAEnv
.
Lemma
nraenv_of_camp_nraenv_core_of_camp_ident
q
:
nraenv_core_of_nraenv
(
nraenv_of_camp
q
) =
nraenv_core_of_camp
q
.
Proof.
induction
q
;
intros
;
try
reflexivity
;
simpl
;
try
(
rewrite
IHq
;
try
reflexivity
);
try
(
rewrite
IHq1
;
rewrite
IHq2
;
try
reflexivity
).
Qed.
Lemma
nraenv_of_camp_correct
h
c
q
env
d
:
lift_failure
(
camp_eval
h
c
q
env
d
) =
nraenv_eval
h
c
(
nraenv_of_camp
q
) (
drec
env
)
d
.
Proof.
rewrite
nraenv_core_of_camp_correct
.
unfold
nraenv_eval
.
rewrite
nraenv_of_camp_nraenv_core_of_camp_ident
.
reflexivity
.
Qed.
Lemma
nraenv_of_camp_equiv_to_nra
h
c
p
bind
d
:
nra_eval
h
c
(
nra_of_camp
p
) (
nra_context_data
(
drec
bind
)
d
) =
nraenv_eval
h
c
(
nraenv_of_camp
p
) (
drec
bind
)
d
.
Proof.
rewrite
<-
nraenv_of_camp_correct
.
rewrite
camp_trans_correct
;
reflexivity
.
Qed.
Lemma
nraenv_of_camp_top_id
h
c
p
d
:
Forall
(
fun
x
=>
data_normalized
h
(
snd
x
))
c
->
nra_eval
h
c
(
nra_of_camp_top
p
)
d
=
nraenv_eval
h
c
(
nraenv_of_camp_top
p
) (
drec
nil
)
d
.
Proof.
intros
.
unfold
nraenv_of_camp_top
.
generalize
nraenv_of_camp_equiv_to_nra
;
intros
Hequiv
.
unfold
nraenv_eval
in
*;
simpl
in
*.
rewrite
<-
Hequiv
.
unfold
nra_context_data
.
reflexivity
.
Qed.
Lemma
ecamp_trans_top_correct
h
c
p
d
:
Forall
(
fun
x
=>
data_normalized
h
(
snd
x
))
c
->
lift_failure
(
camp_eval
h
c
p
nil
d
) =
nraenv_eval
h
c
(
nraenv_of_camp_top
p
) (
drec
nil
)
d
.
Proof.
intros
.
rewrite
<- (
nraenv_of_camp_top_id
h
c
);
trivial
.
rewrite
camp_trans_correct
.
rewrite
camp_trans_top_nra_context
;
trivial
;
reflexivity
.
Qed.
Section
Top
.
Context
(
h
:
brand_relation_t
).
Definition
camp_to_nraenv_top
(
q
:
camp
) :
nraenv
:=
NRAEnvAppEnv
(
nraenv_of_camp
q
) (
NRAEnvConst
(
drec
nil
)).
Theorem
camp_to_nraenv_top_correct
:
forall
q
:
camp
,
forall
global_env
:
bindings
,
camp_eval_top
h
q
global_env
=
nraenv_eval_top
h
(
camp_to_nraenv_top
q
)
global_env
.
Proof.
intros
.
apply
nraenv_of_camp_correct
.
Qed.
End
Top
.
Section
size
.
Require
Import
Omega
.
Proof showing linear size translation
Lemma
camp_trans_size
p
:
nraenv_size
(
nraenv_of_camp
p
) <= 13 *
camp_size
p
.
Proof.
induction
p
;
simpl
;
omega
.
Qed.
End
size
.
Section
sugar
.
Definition
nraenv_of_pand
(
p1
p2
:
camp
) :
nraenv
:=
nraenv_of_camp
(
pand
p1
p2
).
Definition
nraenv_for_pand
(
q1
q2
:
nraenv
) :
nraenv
:=
NRAEnvUnop
AFlatten
(
NRAEnvAppEnv
(
NRAEnvMapEnv
q2
)
(
NRAEnvUnop
AFlatten
(
NRAEnvMap
(
NRAEnvBinop
AMergeConcat
NRAEnvEnv
NRAEnvID
)
(
NRAEnvMap
(
NRAEnvConst
(
drec
nil
))
(
NRAEnvSelect
NRAEnvID
q1
))))).
Lemma
nraenv_of_pand_works
(
p1
p2
:
camp
) :
nraenv_of_camp
(
pand
p1
p2
) =
nraenv_for_pand
(
nraenv_of_camp
p1
) (
nraenv_of_camp
p2
).
Proof.
reflexivity
.
Qed.
Definition
nraenv_of_WW
(
p
:
camp
) :=
nraenv_of_camp
(
WW
p
).
End
sugar
.
End
CAMPtoNRAEnv
.