Module CAMPtoNRAEnv


Section CAMPtoNRAEnv.
  Require Import String.
  Require Import List.
  Require Import Utils.
  Require Import BasicRuntime.
  Require Import NRARuntime.
  Require Import NRAEnvRuntime.
  Require Import CAMPRuntime.
  Require Import CAMPtoNRA.

  Context {fruntime:foreign_runtime}.

Functions used to map input/ouput values between CAMP and NRA

  Definition nraenv_fail := NRAEnvConst (dcoll nil).
  Definition nraenv_match op := NRAEnvUnop AColl op.

Translation from CAMP to EnvNRA

  Fixpoint nraenv_of_camp (p:camp) : nraenv :=
    match p with
      | pconst d' => nraenv_match (NRAEnvConst d')
      | punop uop p₁ => NRAEnvMap (NRAEnvUnop uop NRAEnvID) (nraenv_of_camp p₁)
      | pbinop bop pp₂ =>
        NRAEnvMap (NRAEnvBinop bop (NRAEnvUnop (ADot "a1") NRAEnvID) (NRAEnvUnop (ADot "a2") NRAEnvID))
              (NRAEnvProduct (NRAEnvMap (NRAEnvUnop (ARec "a1") NRAEnvID) (nraenv_of_camp p₁))
                         (NRAEnvMap (NRAEnvUnop (ARec "a2") NRAEnvID) (nraenv_of_camp p₂)))
      | pmap p₁ =>
        nraenv_match
          (NRAEnvUnop AFlatten
                  (NRAEnvMap
                     (nraenv_of_camp p₁) NRAEnvID))
      | passert p₁ =>
        NRAEnvMap (NRAEnvConst (drec nil)) (NRAEnvSelect NRAEnvID (nraenv_of_camp p₁))
      | porElse pp₂ => NRAEnvDefault (nraenv_of_camp p₁) (nraenv_of_camp p₂)
      | pit => nraenv_match NRAEnvID
      | pletIt pp₂ =>
        NRAEnvUnop AFlatten
               (NRAEnvMap (nraenv_of_camp p₂)
                      (nraenv_of_camp p₁))
      | pgetConstant s => nraenv_match (NRAEnvGetConstant s)
      | penv => nraenv_match NRAEnvEnv
      | pletEnv pp₂ =>
        NRAEnvUnop AFlatten
               (NRAEnvAppEnv
                  (NRAEnvMapEnv (nraenv_of_camp p₂))
                  (NRAEnvUnop AFlatten
                          (NRAEnvMap (NRAEnvBinop AMergeConcat NRAEnvEnv NRAEnvID) (nraenv_of_camp p₁))))
      | pleft =>
        NRAEnvEither (nraenv_match NRAEnvID) (nraenv_fail)
      | pright =>
        NRAEnvEither (nraenv_fail) (nraenv_match NRAEnvID)
    end.

top level version sets up the appropriate input (with an empty context)

  Definition nraenv_of_camp_top p :=
    NRAEnvUnop AFlatten
           (NRAEnvMap (nraenv_of_camp p) (NRAEnvUnop AColl NRAEnvID)).
  
Theorem 4.2: lemma of translation correctness for patterns

  Require Import CAMPtocNRAEnv.

  Lemma nraenv_of_camp_nraenv_core_of_camp_ident q :
    nraenv_core_of_nraenv (nraenv_of_camp q) = nraenv_core_of_camp q.
Proof.
    induction q; intros; try reflexivity; simpl;
    try (rewrite IHq; try reflexivity);
    try (rewrite IHq1; rewrite IHq2; try reflexivity).
  Qed.
  
  Lemma nraenv_of_camp_correct h c q env d:
    lift_failure (camp_eval h c q env d) = nraenv_eval h c (nraenv_of_camp q) (drec env) d.
Proof.
    rewrite nraenv_core_of_camp_correct.
    unfold nraenv_eval.
    rewrite nraenv_of_camp_nraenv_core_of_camp_ident.
    reflexivity.
  Qed.
  
  Lemma nraenv_of_camp_equiv_to_nra h c p bind d:
    nra_eval h c (nra_of_camp p) (nra_context_data (drec bind) d) =
    nraenv_eval h c (nraenv_of_camp p) (drec bind) d.
Proof.
    rewrite <- nraenv_of_camp_correct.
    rewrite camp_trans_correct; reflexivity.
  Qed.

  Lemma nraenv_of_camp_top_id h c p d :
    Forall (fun x => data_normalized h (snd x)) c ->
    nra_eval h c (nra_of_camp_top p) d =
    nraenv_eval h c (nraenv_of_camp_top p) (drec nil) d.
Proof.
    intros.
    unfold nraenv_of_camp_top.
    generalize nraenv_of_camp_equiv_to_nra; intros Hequiv.
    unfold nraenv_eval in *; simpl in *.
    rewrite <- Hequiv.
    unfold nra_context_data.
    reflexivity.
  Qed.
  
  Lemma ecamp_trans_top_correct h c p d:
    Forall (fun x => data_normalized h (snd x)) c ->
    lift_failure (camp_eval h c p nil d) = nraenv_eval h c (nraenv_of_camp_top p) (drec nil) d.
Proof.
    intros.
    rewrite <- (nraenv_of_camp_top_id h c); trivial.
    rewrite camp_trans_correct.
    rewrite camp_trans_top_nra_context; trivial; reflexivity.
  Qed.

  Section Top.
    Context (h:brand_relation_t).

    Definition camp_to_nraenv_top (q:camp) : nraenv :=
      NRAEnvAppEnv (nraenv_of_camp q) (NRAEnvConst (drec nil)).

    Theorem camp_to_nraenv_top_correct :
      forall q:camp, forall global_env:bindings,
          camp_eval_top h q global_env =
          nraenv_eval_top h (camp_to_nraenv_top q) global_env.
Proof.
      intros.
      apply nraenv_of_camp_correct.
    Qed.
      
  End Top.

  Section size.
    Require Import Omega.
    
Proof showing linear size translation
    Lemma camp_trans_size p :
      nraenv_size (nraenv_of_camp p) <= 13 * camp_size p.
Proof.
      induction p; simpl; omega.
    Qed.

  End size.

  Section sugar.
    Definition nraenv_of_pand (p1 p2:camp) : nraenv :=
      nraenv_of_camp (pand p1 p2).

    Definition nraenv_for_pand (q1 q2: nraenv) : nraenv :=
      NRAEnvUnop AFlatten
                 (NRAEnvAppEnv (NRAEnvMapEnv q2)
                               (NRAEnvUnop AFlatten
                                           (NRAEnvMap (NRAEnvBinop AMergeConcat NRAEnvEnv NRAEnvID)
                                                      (NRAEnvMap (NRAEnvConst (drec nil))
                                                                 (NRAEnvSelect NRAEnvID q1))))).
  
    Lemma nraenv_of_pand_works (p1 p2:camp) :
      nraenv_of_camp (pand p1 p2) = nraenv_for_pand (nraenv_of_camp p1) (nraenv_of_camp p2).
Proof.
      reflexivity.
    Qed.


    Definition nraenv_of_WW (p:camp) :=
      nraenv_of_camp (WW p).

  End sugar.

End CAMPtoNRAEnv.