Module Qcert.cNRAEnv.Lang.cNRAEnvIgnore


Section cNRAEnvIgnore.
  Require Import Bool.
  Require Import List.
  Require Import String.
  Require Import Utils.
  Require Import CommonRuntime.
  Require Import NRA.
  Require Import NRAEq.
  Require Import cNRAEnv.


  Local Open Scope nra_scope.
  Local Open Scope nraenv_core_scope.
  
Some infrastructure for rewrites

  Context {fruntime:foreign_runtime}.

  Fixpoint nraenv_core_is_nra (e:nraenv_core) : Prop :=
    match e with
    | cNRAEnvID => True
    | cNRAEnvConst rd => True
    | cNRAEnvBinop bop e1 e2 => (nraenv_core_is_nra e1) /\ (nraenv_core_is_nra e2)
    | cNRAEnvUnop uop e1 => nraenv_core_is_nra e1
    | cNRAEnvMap e1 e2 => (nraenv_core_is_nra e1) /\ (nraenv_core_is_nra e2)
    | cNRAEnvMapProduct e1 e2 => (nraenv_core_is_nra e1) /\ (nraenv_core_is_nra e2)
    | cNRAEnvProduct e1 e2 => (nraenv_core_is_nra e1) /\ (nraenv_core_is_nra e2)
    | cNRAEnvSelect e1 e2 => (nraenv_core_is_nra e1) /\ (nraenv_core_is_nra e2)
    | cNRAEnvDefault e1 e2 => (nraenv_core_is_nra e1) /\ (nraenv_core_is_nra e2)
    | cNRAEnvEither e1 e2 => (nraenv_core_is_nra e1) /\ (nraenv_core_is_nra e2)
    | cNRAEnvEitherConcat e1 e2 => (nraenv_core_is_nra e1) /\ (nraenv_core_is_nra e2)
    | cNRAEnvApp e1 e2 => (nraenv_core_is_nra e1) /\ (nraenv_core_is_nra e2)
    | cNRAEnvGetConstant _ => True
    | cNRAEnvEnv => False
    | cNRAEnvAppEnv e1 e2 => False
    | cNRAEnvMapEnv e1 => False
    end.

  Fixpoint nraenv_core_is_nra_fun (e:nraenv_core) : bool :=
    match e with
    | cNRAEnvID => true
    | cNRAEnvConst rd => true
    | cNRAEnvBinop bop e1 e2 => andb (nraenv_core_is_nra_fun e1) (nraenv_core_is_nra_fun e2)
    | cNRAEnvUnop uop e1 => nraenv_core_is_nra_fun e1
    | cNRAEnvMap e1 e2 => andb (nraenv_core_is_nra_fun e1) (nraenv_core_is_nra_fun e2)
    | cNRAEnvMapProduct e1 e2 => andb (nraenv_core_is_nra_fun e1) (nraenv_core_is_nra_fun e2)
    | cNRAEnvProduct e1 e2 => andb (nraenv_core_is_nra_fun e1) (nraenv_core_is_nra_fun e2)
    | cNRAEnvSelect e1 e2 => andb (nraenv_core_is_nra_fun e1) (nraenv_core_is_nra_fun e2)
    | cNRAEnvDefault e1 e2 => andb (nraenv_core_is_nra_fun e1) (nraenv_core_is_nra_fun e2)
    | cNRAEnvEither e1 e2 => andb (nraenv_core_is_nra_fun e1) (nraenv_core_is_nra_fun e2)
    | cNRAEnvEitherConcat e1 e2 => andb (nraenv_core_is_nra_fun e1) (nraenv_core_is_nra_fun e2)
    | cNRAEnvApp e1 e2 => andb (nraenv_core_is_nra_fun e1) (nraenv_core_is_nra_fun e2)
    | cNRAEnvGetConstant _ => true
    | cNRAEnvEnv => false
    | cNRAEnvAppEnv e1 e2 => false
    | cNRAEnvMapEnv e1 => false
    end.

  Lemma nraenv_core_is_nra_eq (e:nraenv_core):
    nraenv_core_is_nra e <-> (nraenv_core_is_nra_fun e = true).
Proof.
    induction e; split; simpl; intros; try auto; try congruence;
      try (rewrite IHe1 in H; rewrite IHe2 in H;
           elim H; clear H; intros;
           rewrite H; rewrite H0; reflexivity);
      try (rewrite andb_true_inversion in H;
           elim H; clear H; intros;
           rewrite <- IHe1 in H; rewrite <- IHe2 in H0;
           split; assumption).
    - rewrite IHe in H; assumption.
    - rewrite <- IHe in H; assumption.
  Qed.

  Fixpoint nraenv_core_ignores_env (e:nraenv_core) : Prop :=
    match e with
    | cNRAEnvID => True
    | cNRAEnvConst rd => True
    | cNRAEnvBinop bop e1 e2 => (nraenv_core_ignores_env e1) /\ (nraenv_core_ignores_env e2)
    | cNRAEnvUnop uop e1 => nraenv_core_ignores_env e1
    | cNRAEnvMap e1 e2 => (nraenv_core_ignores_env e1) /\ (nraenv_core_ignores_env e2)
    | cNRAEnvMapProduct e1 e2 => (nraenv_core_ignores_env e1) /\ (nraenv_core_ignores_env e2)
    | cNRAEnvProduct e1 e2 => (nraenv_core_ignores_env e1) /\ (nraenv_core_ignores_env e2)
    | cNRAEnvSelect e1 e2 => (nraenv_core_ignores_env e1) /\ (nraenv_core_ignores_env e2)
    | cNRAEnvDefault e1 e2 => (nraenv_core_ignores_env e1) /\ (nraenv_core_ignores_env e2)
    | cNRAEnvEither e1 e2 => (nraenv_core_ignores_env e1) /\ (nraenv_core_ignores_env e2)
    | cNRAEnvEitherConcat e1 e2 => (nraenv_core_ignores_env e1) /\ (nraenv_core_ignores_env e2)
    | cNRAEnvApp e1 e2 => (nraenv_core_ignores_env e1) /\ (nraenv_core_ignores_env e2)
    | cNRAEnvGetConstant _ => True
    | cNRAEnvEnv => False
    | cNRAEnvAppEnv e1 e2 => (nraenv_core_ignores_env e2)
    | cNRAEnvMapEnv e1 => False
    end.

  Fixpoint nraenv_core_ignores_env_fun (e:nraenv_core) : bool :=
    match e with
    | cNRAEnvID => true
    | cNRAEnvConst rd => true
    | cNRAEnvBinop bop e1 e2 => andb (nraenv_core_ignores_env_fun e1) (nraenv_core_ignores_env_fun e2)
    | cNRAEnvUnop uop e1 => nraenv_core_ignores_env_fun e1
    | cNRAEnvMap e1 e2 => andb (nraenv_core_ignores_env_fun e1) (nraenv_core_ignores_env_fun e2)
    | cNRAEnvMapProduct e1 e2 => andb (nraenv_core_ignores_env_fun e1) (nraenv_core_ignores_env_fun e2)
    | cNRAEnvProduct e1 e2 => andb (nraenv_core_ignores_env_fun e1) (nraenv_core_ignores_env_fun e2)
    | cNRAEnvSelect e1 e2 => andb (nraenv_core_ignores_env_fun e1) (nraenv_core_ignores_env_fun e2)
    | cNRAEnvDefault e1 e2 => andb (nraenv_core_ignores_env_fun e1) (nraenv_core_ignores_env_fun e2)
    | cNRAEnvEither e1 e2 => andb (nraenv_core_ignores_env_fun e1) (nraenv_core_ignores_env_fun e2)
    | cNRAEnvEitherConcat e1 e2 => andb (nraenv_core_ignores_env_fun e1) (nraenv_core_ignores_env_fun e2)
    | cNRAEnvApp e1 e2 => andb (nraenv_core_ignores_env_fun e1) (nraenv_core_ignores_env_fun e2)
    | cNRAEnvGetConstant _ => true
    | cNRAEnvEnv => false
    | cNRAEnvAppEnv e1 e2 => (nraenv_core_ignores_env_fun e2)
    | cNRAEnvMapEnv e1 => false
    end.

  Lemma nraenv_core_ignores_env_eq (e:nraenv_core):
    nraenv_core_ignores_env e <-> (nraenv_core_ignores_env_fun e = true).
Proof.
    induction e; split; simpl; intros; try auto; try congruence;
      try (rewrite IHe1 in H; rewrite IHe2 in H;
           elim H; clear H; intros;
           rewrite H; rewrite H0; reflexivity);
      try (rewrite andb_true_inversion in H;
           elim H; clear H; intros;
           rewrite <- IHe1 in H; rewrite <- IHe2 in H0;
           split; assumption).
    - rewrite IHe in H; assumption.
    - rewrite <- IHe in H; assumption.
    - rewrite <- IHe2; assumption.
    - rewrite <- IHe2 in H; assumption.
  Qed.


  Fixpoint nraenv_core_fixed_env (e:nraenv_core) : Prop :=
    match e with
    | cNRAEnvID => True
    | cNRAEnvConst rd => True
    | cNRAEnvBinop bop e1 e2 => (nraenv_core_fixed_env e1) /\ (nraenv_core_fixed_env e2)
    | cNRAEnvUnop uop e1 => nraenv_core_fixed_env e1
    | cNRAEnvMap e1 e2 => (nraenv_core_fixed_env e1) /\ (nraenv_core_fixed_env e2)
    | cNRAEnvMapProduct e1 e2 => (nraenv_core_fixed_env e1) /\ (nraenv_core_fixed_env e2)
    | cNRAEnvProduct e1 e2 => (nraenv_core_fixed_env e1) /\ (nraenv_core_fixed_env e2)
    | cNRAEnvSelect e1 e2 => (nraenv_core_fixed_env e1) /\ (nraenv_core_fixed_env e2)
    | cNRAEnvDefault e1 e2 => (nraenv_core_fixed_env e1) /\ (nraenv_core_fixed_env e2)
    | cNRAEnvEither e1 e2 => (nraenv_core_fixed_env e1) /\ (nraenv_core_fixed_env e2)
    | cNRAEnvEitherConcat e1 e2 => (nraenv_core_fixed_env e1) /\ (nraenv_core_fixed_env e2)
    | cNRAEnvApp e1 e2 => (nraenv_core_fixed_env e1) /\ (nraenv_core_fixed_env e2)
    | cNRAEnvGetConstant _ => True
    | cNRAEnvEnv => True
    | cNRAEnvAppEnv e1 e2 => False
    | cNRAEnvMapEnv e1 => False
    end.

  Fixpoint nraenv_core_fixed_env_fun (e:nraenv_core) : bool :=
    match e with
    | cNRAEnvID => true
    | cNRAEnvConst rd => true
    | cNRAEnvBinop bop e1 e2 => andb (nraenv_core_fixed_env_fun e1) (nraenv_core_fixed_env_fun e2)
    | cNRAEnvUnop uop e1 => nraenv_core_fixed_env_fun e1
    | cNRAEnvMap e1 e2 => andb (nraenv_core_fixed_env_fun e1) (nraenv_core_fixed_env_fun e2)
    | cNRAEnvMapProduct e1 e2 => andb (nraenv_core_fixed_env_fun e1) (nraenv_core_fixed_env_fun e2)
    | cNRAEnvProduct e1 e2 => andb (nraenv_core_fixed_env_fun e1) (nraenv_core_fixed_env_fun e2)
    | cNRAEnvSelect e1 e2 => andb (nraenv_core_fixed_env_fun e1) (nraenv_core_fixed_env_fun e2)
    | cNRAEnvDefault e1 e2 => andb (nraenv_core_fixed_env_fun e1) (nraenv_core_fixed_env_fun e2)
    | cNRAEnvEither e1 e2 => andb (nraenv_core_fixed_env_fun e1) (nraenv_core_fixed_env_fun e2)
    | cNRAEnvEitherConcat e1 e2 => andb (nraenv_core_fixed_env_fun e1) (nraenv_core_fixed_env_fun e2)
    | cNRAEnvApp e1 e2 => andb (nraenv_core_fixed_env_fun e1) (nraenv_core_fixed_env_fun e2)
    | cNRAEnvGetConstant _ => true
    | cNRAEnvEnv => true
    | cNRAEnvAppEnv e1 e2 => false
    | cNRAEnvMapEnv e1 => false
    end.

  Lemma nraenv_core_fixed_env_eq (e:nraenv_core):
    nraenv_core_fixed_env e <-> (nraenv_core_fixed_env_fun e = true).
Proof.
    induction e; split; simpl; intros; try auto; try congruence;
      try (rewrite IHe1 in H; rewrite IHe2 in H;
           elim H; clear H; intros;
           rewrite H; rewrite H0; reflexivity);
      try (rewrite andb_true_inversion in H;
           elim H; clear H; intros;
           rewrite <- IHe1 in H; rewrite <- IHe2 in H0;
           split; assumption).
    - rewrite IHe in H; assumption.
    - rewrite <- IHe in H; assumption.
  Qed.

  
  Fixpoint nraenv_core_ignores_id (e:nraenv_core) : Prop :=
    match e with
    | cNRAEnvID => False
    | cNRAEnvConst rd => True
    | cNRAEnvBinop bop e1 e2 => (nraenv_core_ignores_id e1) /\ (nraenv_core_ignores_id e2)
    | cNRAEnvUnop uop e1 => nraenv_core_ignores_id e1
    | cNRAEnvMap e1 e2 => nraenv_core_ignores_id e2
    | cNRAEnvMapProduct e1 e2 => nraenv_core_ignores_id e2
    | cNRAEnvProduct e1 e2 => (nraenv_core_ignores_id e1) /\ (nraenv_core_ignores_id e2)
    | cNRAEnvSelect e1 e2 => (nraenv_core_ignores_id e2)
    | cNRAEnvDefault e1 e2 => (nraenv_core_ignores_id e1) /\ (nraenv_core_ignores_id e2)
    | cNRAEnvEither e1 e2 => False
    | cNRAEnvEitherConcat e1 e2 => (nraenv_core_ignores_id e1) /\ (nraenv_core_ignores_id e2)
    | cNRAEnvApp e1 e2 => (nraenv_core_ignores_id e2)
    | cNRAEnvGetConstant _ => True
    | cNRAEnvEnv => True
    | cNRAEnvAppEnv e1 e2 => (nraenv_core_ignores_id e1) /\ (nraenv_core_ignores_id e2)
    | cNRAEnvMapEnv e1 => (nraenv_core_ignores_id e1)
    end.

  Fixpoint nraenv_core_ignores_id_fun (e:nraenv_core) : bool :=
    match e with
    | cNRAEnvID => false
    | cNRAEnvConst rd => true
    | cNRAEnvBinop bop e1 e2 => andb (nraenv_core_ignores_id_fun e1) (nraenv_core_ignores_id_fun e2)
    | cNRAEnvUnop uop e1 => nraenv_core_ignores_id_fun e1
    | cNRAEnvMap e1 e2 => nraenv_core_ignores_id_fun e2
    | cNRAEnvMapProduct e1 e2 => nraenv_core_ignores_id_fun e2
    | cNRAEnvProduct e1 e2 => andb (nraenv_core_ignores_id_fun e1) (nraenv_core_ignores_id_fun e2)
    | cNRAEnvSelect e1 e2 => (nraenv_core_ignores_id_fun e2)
    | cNRAEnvDefault e1 e2 => andb (nraenv_core_ignores_id_fun e1) (nraenv_core_ignores_id_fun e2)
    | cNRAEnvEither e1 e2 => false
    | cNRAEnvEitherConcat e1 e2 => andb (nraenv_core_ignores_id_fun e1) (nraenv_core_ignores_id_fun e2)
    | cNRAEnvApp e1 e2 => (nraenv_core_ignores_id_fun e2)
    | cNRAEnvGetConstant _ => true
    | cNRAEnvEnv => true
    | cNRAEnvAppEnv e1 e2 => andb (nraenv_core_ignores_id_fun e1) (nraenv_core_ignores_id_fun e2)
    | cNRAEnvMapEnv e1 => (nraenv_core_ignores_id_fun e1)
    end.
  
  Lemma nraenv_core_ignores_id_eq (e:nraenv_core):
    nraenv_core_ignores_id e <-> (nraenv_core_ignores_id_fun e = true).
Proof.
    induction e; split; simpl; intros; try auto; try congruence.
    - rewrite IHe1 in H; rewrite IHe2 in H;
        elim H; clear H; intros;
          rewrite H; rewrite H0; reflexivity.
    - rewrite andb_true_inversion in H;
        elim H; clear H; intros;
          rewrite <- IHe1 in H; rewrite <- IHe2 in H0;
            split; assumption.
    - rewrite IHe in H; assumption.
    - rewrite <- IHe in H; assumption.
    - rewrite IHe2 in H; assumption.
    - rewrite <- IHe2 in H; assumption.
    - rewrite IHe2 in H; assumption.
    - rewrite <- IHe2 in H; assumption.
    - rewrite IHe1 in H; rewrite IHe2 in H;
        elim H; clear H; intros;
          rewrite H; rewrite H0; reflexivity.
    - rewrite andb_true_inversion in H;
        elim H; clear H; intros;
          rewrite <- IHe1 in H; rewrite <- IHe2 in H0;
            split; assumption.
    - rewrite IHe2 in H; assumption.
    - rewrite <- IHe2 in H; assumption.
    - rewrite IHe1 in H; rewrite IHe2 in H;
        elim H; clear H; intros;
          rewrite H; rewrite H0; reflexivity.
    - rewrite andb_true_inversion in H;
        elim H; clear H; intros;
          rewrite <- IHe1 in H; rewrite <- IHe2 in H0;
            split; assumption.
    - rewrite IHe1 in H; rewrite IHe2 in H;
        elim H; clear H; intros;
          rewrite H; rewrite H0; reflexivity.
    - rewrite andb_true_inversion in H;
        elim H; clear H; intros;
          rewrite <- IHe1 in H; rewrite <- IHe2 in H0;
            split; assumption.
    - intuition.
    - intuition.
    - intuition.
    - rewrite andb_true_inversion in H;
        elim H; clear H; intros;
          rewrite <- IHe1 in H; rewrite <- IHe2 in H0;
            split; assumption.
    - rewrite <- IHe; assumption.
    - rewrite IHe; assumption.
  Qed.
  
  Fixpoint nraenv_core_deenv_nra (ae:nraenv_core) : nra :=
    match ae with
    | cNRAEnvID => NRAID
    | cNRAEnvConst d => NRAConst d
    | cNRAEnvBinop b ae1 ae2 => NRABinop b (nraenv_core_deenv_nra ae1) (nraenv_core_deenv_nra ae2)
    | cNRAEnvUnop u ae1 => NRAUnop u (nraenv_core_deenv_nra ae1)
    | cNRAEnvMap ea1 ea2 => NRAMap (nraenv_core_deenv_nra ea1) (nraenv_core_deenv_nra ea2)
    | cNRAEnvMapProduct ea1 ea2 => NRAMapProduct (nraenv_core_deenv_nra ea1) (nraenv_core_deenv_nra ea2)
    | cNRAEnvProduct ea1 ea2 => NRAProduct (nraenv_core_deenv_nra ea1) (nraenv_core_deenv_nra ea2)
    | cNRAEnvSelect ea1 ea2 => NRASelect (nraenv_core_deenv_nra ea1) (nraenv_core_deenv_nra ea2)
    | cNRAEnvDefault ea1 ea2 => NRADefault (nraenv_core_deenv_nra ea1) (nraenv_core_deenv_nra ea2)
    | cNRAEnvEither ea1 ea2 => NRAEither (nraenv_core_deenv_nra ea1) (nraenv_core_deenv_nra ea2)
    | cNRAEnvEitherConcat ea1 ea2 => NRAEitherConcat (nraenv_core_deenv_nra ea1) (nraenv_core_deenv_nra ea2)
    | cNRAEnvApp ea1 ea2 => NRAApp (nraenv_core_deenv_nra ea1) (nraenv_core_deenv_nra ea2)
    | cNRAEnvGetConstant s => NRAGetConstant s
    | cNRAEnvEnv => NRAID
    | cNRAEnvAppEnv ea1 ea2 => NRAID
    | cNRAEnvMapEnv ea1 => NRAID
    end.

  Lemma nraenv_core_ignores_env_swap (e:nraenv_core) :
    nraenv_core_ignores_env e -> forall (h:list (string*string)) c,
                               forall (env1 env2:data), forall x:data,
                       h ⊢ₑ e @ₑ xc;env1 = h ⊢ₑ e @ₑ xc;env2.
Proof.
    intros H h c.
    simpl.
    revert H h.
    induction e; try reflexivity; simpl in *; try congruence; intros.
    - inversion H; clear H.
      rewrite (IHe1 H0 h env1 env2); rewrite (IHe2 H1 h env1 env2); reflexivity.
    - rewrite (IHe H h env1 env2); reflexivity.
    - inversion H; clear H.
      rewrite (IHe2 H1 h env1 env2); clear IHe2 H1.
      generalize ((nraenv_core_eval h c e2 env2)); intros.
      destruct o; try reflexivity; simpl.
      destruct d; try reflexivity; simpl.
      induction l; try reflexivity; simpl.
      rewrite (IHe1 H0 h env1 env2); clear IHe1 H0.
      destruct (nraenv_core_eval h c e1 env2 a); intros; trivial.
      unfold lift in *; simpl in *.
      revert IHl.
      generalize (lift_map (nraenv_core_eval h c e1 env1) l);
        generalize (lift_map (nraenv_core_eval h c e1 env2) l); intros.
      destruct o1; destruct o0; simpl; congruence.
    - inversion H; clear H.
      rewrite (IHe2 H1 h env1 env2); clear IHe2 H1.
      generalize (h ⊢ₑ e2 @ₑ xc;env2); intros.
      destruct o; try reflexivity; simpl.
      destruct d; try reflexivity; simpl.
      induction l; try reflexivity; simpl.
      unfold lift in *; simpl.
      unfold omap_product in *; simpl.
      unfold oncoll_map_concat in *; simpl.
      rewrite (IHe1 H0 h env1 env2); clear IHe1 H0.
      generalize (h ⊢ₑ e1 @ₑ ac;env2); intros.
      destruct o; try reflexivity; simpl.
      revert IHl.
      generalize (lift_flat_map
                    (fun a0 : data =>
                       match h ⊢ₑ e1 @ₑ a0c;env1 with
                       | Some (dcoll y) => omap_concat a0 y
                       | _ => None
                       end) l
                 ); generalize (lift_flat_map
                                  (fun a0 : data =>
                                     match h ⊢ₑ e1 @ₑ a0c;env2 with
                                     | Some (dcoll y) => omap_concat a0 y
                                     | _ => None
                                     end) l
                               ); intros.
      destruct o; destruct o0; try congruence.
      inversion IHl; reflexivity.
    - inversion H; clear H.
      rewrite (IHe1 H0 h env1 env2); rewrite (IHe2 H1 h env1 env2); reflexivity.
    - inversion H; clear H.
      rewrite (IHe2 H1 h env1 env2); clear IHe2 H1.
      generalize (h ⊢ₑ e2 @ₑ xc;env2); intros.
      destruct o; try reflexivity; simpl.
      destruct d; try reflexivity; simpl.
      induction l; try reflexivity; simpl.
      rewrite (IHe1 H0 h env1 env2); clear IHe1 H0.
      generalize (h ⊢ₑ e1 @ₑ ac;env2); intros.
      destruct o; try reflexivity; simpl.
      unfold lift in *; simpl in *.
      revert IHl.
      generalize (lift_filter
                    (fun x' : data =>
                       match h ⊢ₑ e1 @ₑx' ⊣ c;env1 with
                       | Some (dbool b) => Some b
                       | _ => None
                       end) l
                 ); generalize (lift_filter
                                  (fun x' : data =>
                                     match h ⊢ₑ e1 @ₑ x' ⊣ c;env2 with
                                     | Some (dbool b) => Some b
                                     | _ => None
                                     end) l
                               ); intros.
      destruct o; destruct o0; try congruence.
      inversion IHl; reflexivity.
    - inversion H; clear H.
      rewrite (IHe1 H0 h env1 env2); rewrite (IHe2 H1 h env1 env2); reflexivity.
    - destruct x; simpl; intuition.
    - inversion H; clear H.
      unfold olift; simpl.
      rewrite (IHe2 H1 h env1 env2).
      destruct (h ⊢ₑ e2 @ₑ xc;env2);
        rewrite (IHe1 H0 h env1 env2); reflexivity.
    - inversion H; clear H.
      unfold olift; simpl.
      rewrite (IHe2 H1 h env1 env2).
      destruct (h ⊢ₑ e2 @ₑ xc;env2).
      rewrite (IHe1 H0 h env1 env2); reflexivity. reflexivity.
    - contradiction.
    - rewrite (IHe2 H h env1 env2 x).
      reflexivity.
    - contradiction.
  Qed.
  
  Lemma nraenv_core_ignores_id_swap (e:nraenv_core) :
    nraenv_core_ignores_id e -> forall h:list (string*string), forall c,
        forall env:data, forall x1 x2:data,
            h ⊢ₑ e @ₑ x1c;env = h ⊢ₑ e @ₑ x2c;env.
Proof.
    intros H h c.
    revert H h.
    induction e; try reflexivity; simpl in *; try congruence; intros.
    - contradiction.
    - inversion H; clear H.
      rewrite (IHe1 H0 h env x1 x2); rewrite (IHe2 H1 h env x1 x2); reflexivity.
    - rewrite (IHe H h env x1 x2); reflexivity.
    - rewrite (IHe2 H h env x1 x2); clear IHe2 H; reflexivity.
    - rewrite (IHe2 H h env x1 x2); clear IHe2 H; reflexivity.
    - inversion H; clear H.
      rewrite (IHe1 H0 h env x1 x2); rewrite (IHe2 H1 h env x1 x2); reflexivity.
    - rewrite (IHe2 H h env x1 x2); clear IHe2 H; reflexivity.
    - inversion H; clear H.
      rewrite (IHe1 H0 h env x1 x2); rewrite (IHe2 H1 h env x1 x2); reflexivity.
    - intuition.
    - inversion H; clear H.
      rewrite (IHe1 H0 h env x1 x2); rewrite (IHe2 H1 h env x1 x2); reflexivity.
    - rewrite (IHe2 H h env x1 x2); reflexivity.
    - inversion H; clear H.
      rewrite (IHe2 H1 h env x1 x2).
      destruct (h ⊢ₑ e2 @ₑ x2c;env); try reflexivity; simpl.
      erewrite IHe1 by trivial; reflexivity.
    - destruct env; try reflexivity; simpl.
      f_equal.
      apply lift_map_ext; intros.
      rewrite (IHe H h x x1 x2); reflexivity.
  Qed.

  Require Import NRASugar.
  Lemma nraenv_core_is_nra_deenv (h:list (string*string)) c (e:nraenv_core) (d1 d2:data) :
    nraenv_core_is_nra e ->
        h ⊢ (nra_of_nraenv_core e) @ₐ (nra_context_data d1 d2) ⊣ c =
        h ⊢ (nraenv_core_deenv_nra e) @ₐ d2c.
Proof.
    intros.
    revert d1 d2; induction e; try reflexivity; simpl in *; try (inversion H; congruence); simpl; intros.
    - inversion H; clear H.
      specialize (IHe1 H0); clear H0.
      specialize (IHe2 H1); clear H1.
      rewrite IHe1; rewrite IHe2; reflexivity.
    - specialize (IHe H); clear H.
      rewrite IHe; reflexivity.
    - inversion H; clear H.
      specialize (IHe1 H0); clear H0.
      specialize (IHe2 H1); clear H1.
      rewrite IHe2; clear IHe2.
      unfold olift, olift2; simpl.
      generalize (nra_eval h c (nraenv_core_deenv_nra e2) d2); intros; simpl; clear e2.
      destruct o; try reflexivity; simpl.
      destruct d; try reflexivity; simpl.
      unfold lift, omap_product, oncoll_map_concat; simpl.
      rewrite lift_map_map_rec1 in *; simpl.
      rewrite omap_concat_map_rec in *; simpl.
      rewrite app_nil_r.
      rewrite lift_map_remove1; simpl.
      unfold nra_context_data in *.
      induction l; try reflexivity; simpl.
      rewrite IHe1; simpl.
      destruct (nra_eval h c (nraenv_core_deenv_nra e1) a); try reflexivity.
      unfold lift; simpl.
      revert IHl.
      generalize (lift_map (nra_eval h c (nra_of_nraenv_core e1))
                       (map (fun x : data => drec (("PBIND"%string, d1) :: ("PDATA"%string, x) :: nil)) l));
        generalize (lift_map (nra_eval h c (nraenv_core_deenv_nra e1)) l); intros.
      destruct o; destruct o0; try congruence.
    - inversion H; clear H.
      specialize (IHe1 H0); clear H0.
      specialize (IHe2 H1); clear H1.
      rewrite IHe2; clear IHe2.
      unfold olift, olift2; simpl.
      generalize (nra_eval h c (nraenv_core_deenv_nra e2) d2); intros; simpl; clear e2.
      destruct o; try reflexivity; simpl.
      destruct d; try reflexivity; simpl.
      unfold lift, omap_product, oncoll_map_concat; simpl.
      rewrite lift_map_map_rec1 in *; simpl.
      rewrite omap_concat_map_rec in *; simpl.
      rewrite app_nil_r in *.
      rewrite lift_map_remove1 in *; simpl.
      unfold nra_context_data in *.
      induction l; try reflexivity; simpl.
      rewrite IHe1; simpl; clear IHe1.
      generalize (nra_eval h c (nraenv_core_deenv_nra e1) a); intros.
      destruct o; try reflexivity.
      destruct d; try reflexivity.
      unfold lift_oncoll in *; simpl in *.
      rewrite lift_map_map_rec1 in *; simpl in *.
      rewrite omap_concat_map_rec2 in *; simpl in *.
      unfold lift in *; simpl in *.
      revert IHl.
      generalize (
                 lift_flat_map
         (fun a0 : data =>
          match
            match nra_eval h c (nra_of_nraenv_core e1) a0 with
            | Some (dcoll l1) =>
                match
                  lift_map (fun x : data => Some (drec (("PDATA2"%string, x) :: nil))) l1
                with
                | Some a' => Some (dcoll a')
                | None => None
                end
            | _ => None
            end
          with
          | Some (dcoll y) => omap_concat a0 y
          | _ => None
          end) (map (fun x : data => drec (("PBIND"%string, d1) :: ("PDATA"%string, x) :: nil)) l)

        ); generalize (
     lift_flat_map
       (fun a0 : data =>
        match nra_eval h c (nraenv_core_deenv_nra e1) a0 with
        | Some (dcoll y) => omap_concat a0 y
        | _ => None
        end) l
             ); intros.
      destruct o; destruct o0; try reflexivity; try congruence; simpl; try rewrite lift_map_map_unnest2; simpl in *.
      * generalize lift_map_map_unnest2; intros HH.
        unfold olift2 in HH.
        rewrite HH; clear HH.
        revert IHl.
        unfold olift2 in *; simpl in *.
        generalize ( lift_map
       (fun x : data =>
        match
          match x with
          | drec r => edot r "PDATA"
          | _ => None
          end
        with
        | Some d3 =>
            match
              match x with
              | drec r => edot r "PDATA2"
              | _ => None
              end
            with
            | Some d4 =>
                match d3 with
                | drec r1 =>
                    match d4 with
                    | drec r2 => Some (drec (rec_sort (r1 ++ r2)))
                    | _ => None
                    end
                | _ => None
                end
            | None => None
            end
        | None => None
        end) l2); intros.
        destruct o; try reflexivity; try congruence; simpl.
        inversion IHl.
        subst.
        reflexivity.
      * generalize lift_map_map_unnest2; intros HH.
        unfold olift2 in HH.
        rewrite HH; clear HH.
        revert IHl.
        unfold olift2 in *; simpl in *.
        generalize ( lift_map
       (fun x : data =>
        match
          match x with
          | drec r => edot r "PDATA"
          | _ => None
          end
        with
        | Some d3 =>
            match
              match x with
              | drec r => edot r "PDATA2"
              | _ => None
              end
            with
            | Some d4 =>
                match d3 with
                | drec r1 =>
                    match d4 with
                    | drec r2 => Some (drec (rec_sort (r1 ++ r2)))
                    | _ => None
                    end
                | _ => None
                end
            | None => None
            end
        | None => None
        end) l1); intros.
        destruct o; try reflexivity; congruence.
      * destruct (omap_concat a l0); congruence.
    - inversion H; clear H.
      specialize (IHe1 H0); clear H0.
      specialize (IHe2 H1); clear H1.
      rewrite IHe1; rewrite IHe2; reflexivity.
    - inversion H; clear H.
      specialize (IHe1 H0); clear H0.
      specialize (IHe2 H1); clear H1.
      rewrite IHe2; clear IHe2.
      unfold olift, olift2; simpl.
      generalize (nra_eval h c (nraenv_core_deenv_nra e2) d2); intros; simpl; clear e2.
      destruct o; try reflexivity; simpl.
      destruct d; try reflexivity; simpl.
      unfold lift, omap_product, oncoll_map_concat; simpl.
      rewrite lift_map_map_rec1 in *; simpl.
      rewrite omap_concat_map_rec in *; simpl.
      rewrite app_nil_r in *.
      rewrite lift_map_remove1 in *; simpl.
      unfold nra_context_data in *.
      induction l; try reflexivity; simpl.
      rewrite IHe1; simpl; clear IHe1.
      generalize (nra_eval h c (nraenv_core_deenv_nra e1) a); intros.
      destruct o; try reflexivity.
      destruct d; try reflexivity.
      unfold lift_oncoll in *; simpl in *.
      revert IHl.
      generalize (lift_filter
         (fun x' : data =>
          match nra_eval h c (nra_of_nraenv_core e1) x' with
          | Some (dbool b0) => Some b0
          | _ => None
          end) (map (fun x : data => drec (("PBIND"%string, d1) :: ("PDATA"%string, x) :: nil)) l)
                 ); intros.
      destruct o; try reflexivity; try congruence; simpl.
      * destruct b; try reflexivity.
        rewrite lift_map_one1.
        revert IHl.
        generalize (lift_map
         (fun x : data =>
          match x with
          | drec r => edot r "PDATA"
          | _ => None
          end) l0);
        generalize (lift_filter
       (fun x' : data =>
        match nra_eval h c (nraenv_core_deenv_nra e1) x' with
        | Some (dbool b) => Some b
        | _ => None
        end) l
                                 ); intros.
        destruct o; destruct o0; try reflexivity; try congruence; simpl.
        revert IHl.
        generalize (lift_map
         (fun x : data =>
          match x with
          | drec r => edot r "PDATA"
          | _ => None
          end) l0);
        generalize (lift_filter
       (fun x' : data =>
        match nra_eval h c (nraenv_core_deenv_nra e1) x' with
        | Some (dbool b) => Some b
        | _ => None
        end) l
                                 ); intros.
        destruct o; destruct o0; try reflexivity; congruence.
      * revert IHl.
        generalize (lift_filter
       (fun x' : data =>
        match nra_eval h c (nraenv_core_deenv_nra e1) x' with
        | Some (dbool b0) => Some b0
        | _ => None
        end) l); intros.
        destruct o; congruence.
    - inversion H; clear H.
      specialize (IHe1 H0); clear H0.
      specialize (IHe2 H1); clear H1.
      rewrite IHe1; rewrite IHe2; reflexivity.
    - destruct H as [i1 i2].
      destruct d2; trivial; simpl.
      + apply IHe1; trivial.
      + apply IHe2; trivial.
    - inversion H; clear H.
      specialize (IHe1 H0); clear H0.
      specialize (IHe2 H1); clear H1.
      rewrite IHe2; simpl; clear IHe2.
      generalize (nra_eval h c (nraenv_core_deenv_nra e2) d2); intros; simpl.
      destruct o; try reflexivity; simpl;
      unfold nra_context_data in *;
      rewrite IHe1; reflexivity.
    - inversion H; clear H.
      specialize (IHe1 H0); clear H0.
      specialize (IHe2 H1); clear H1.
      rewrite IHe2; simpl; clear IHe2.
      generalize (nra_eval h c (nraenv_core_deenv_nra e2) d2); intros; simpl.
      destruct o; try reflexivity; simpl.
      unfold nra_context_data in *;
        rewrite IHe1; reflexivity.
  Qed.

  Fixpoint nraenv_core_of_nra (a:nra) : nraenv_core :=
    match a with
      | NRAGetConstant s => cNRAEnvGetConstant s
      | NRAID => cNRAEnvID
      | NRAConst d => cNRAEnvConst d
      | NRABinop b e1 e2 => cNRAEnvBinop b (nraenv_core_of_nra e1) (nraenv_core_of_nra e2)
      | NRAUnop u e1 => cNRAEnvUnop u (nraenv_core_of_nra e1)
      | NRAMap e1 e2 => cNRAEnvMap (nraenv_core_of_nra e1) (nraenv_core_of_nra e2)
      | NRAMapProduct e1 e2 => cNRAEnvMapProduct (nraenv_core_of_nra e1) (nraenv_core_of_nra e2)
      | NRAProduct e1 e2 => cNRAEnvProduct (nraenv_core_of_nra e1) (nraenv_core_of_nra e2)
      | NRASelect e1 e2 => cNRAEnvSelect (nraenv_core_of_nra e1) (nraenv_core_of_nra e2)
      | NRADefault e1 e2 => cNRAEnvDefault (nraenv_core_of_nra e1) (nraenv_core_of_nra e2)
      | NRAEither opl opr => cNRAEnvEither (nraenv_core_of_nra opl) (nraenv_core_of_nra opr)
      | NRAEitherConcat op1 op2 => cNRAEnvEitherConcat (nraenv_core_of_nra op1) (nraenv_core_of_nra op2)
      | NRAApp e1 e2 => cNRAEnvApp (nraenv_core_of_nra e1) (nraenv_core_of_nra e2)
    end.

  Lemma nraenv_core_eval_of_nra h c e d env :
    nra_eval h c e d = nraenv_core_eval h c (nraenv_core_of_nra e) env d.
Proof.
    revert d env.
    induction e; simpl; trivial; intros;
    try rewrite <- IHe;
    try rewrite <- IHe1; try rewrite <- IHe2; trivial;
    repeat (first [
                apply olift_ext
              | apply lift_oncoll_ext
              | apply lift_dcoll_inversion
              | apply lift_map_ext
              | apply omap_product_ext
              | apply lift_filter_ext]; intros); trivial.
    - rewrite <- IHe1; trivial.
    - match_destr.
  Qed.
  
  Lemma nraenv_core_of_nra_is_nra x : nraenv_core_is_nra (nraenv_core_of_nra x).
Proof.
    induction x; simpl; auto.
  Qed.

  Lemma nraenv_core_deenv_nra_of_nra x : nraenv_core_deenv_nra (nraenv_core_of_nra x) = x.
Proof.
    induction x; simpl; try congruence.
  Qed.
    
End cNRAEnvIgnore.