Module TDBindings
Section
TDBindings
.
Require
Import
String
.
Require
Import
List
.
Require
Import
Sumbool
.
Require
Import
Arith
.
Require
Import
Bool
.
Require
Import
Morphisms
.
Require
Import
Basics
.
Require
Import
BrandRelation
.
Require
Import
Utils
Types
BasicRuntime
.
Require
Import
ForeignDataTyping
.
Require
Import
TDData
.
Context
{
fdata
:
foreign_data
}.
Context
{
ftype
:
foreign_type
}.
Context
{
fdtyping
:
foreign_data_typing
}.
Context
{
m
:
brand_model
}.
Definition
tdbindings
:=
list
(
string
*
drtype
).
Definition
dbindings_type
(
b
:
list
(
string
*
ddata
)) (
t
:
tdbindings
)
:=
Forall2
(
fun
xy1
xy2
=>
(
fst
xy1
) = (
fst
xy2
)
/\
ddata_type
(
snd
xy1
) (
snd
xy2
))
b
t
.
Hint
Resolve
ddata_dtype_normalized
.
Lemma
dbindings_type_Forall_normalized
c
τ
c
:
dbindings_type
c
τ
c
->
Forall
(
fun
d
:
string
*
ddata
=>
ddata_normalized
brand_relation_brands
(
snd
d
))
c
.
Proof.
induction
1;
trivial
.
intuition
.
constructor
.
-
destruct
x
;
destruct
y
;
simpl
in
*;
subst
.
apply
(
ddata_dtype_normalized
_
_
H2
).
-
auto
.
Qed.
Definition
tdbindings_sub
:
tdbindings
->
tdbindings
->
Prop
:=
Forall2
(
fun
(
xy1
:
string
*
drtype
) (
xy2
:
string
*
drtype
) =>
fst
xy1
=
fst
xy2
/\
drtype_sub
(
snd
xy1
) (
snd
xy2
)).
Global
Instance
eq_and_drtype_pre
:
PreOrder
(
fun
xy1
xy2
:
string
*
drtype
=>
fst
xy1
=
fst
xy2
/\
drtype_sub
(
snd
xy1
) (
snd
xy2
)).
Proof.
constructor
;
red
.
-
intuition
;
reflexivity
.
-
intuition
;
etransitivity
;
eauto
.
Qed.
Global
Instance
tdbindings_sub_pre
:
PreOrder
tdbindings_sub
.
Proof.
unfold
tdbindings_sub
.
apply
Forall2_pre
.
apply
eq_and_drtype_pre
.
Qed.
Global
Instance
tdbindings_sub_part
:
PartialOrder
eq
tdbindings_sub
.
Proof.
unfold
tdbindings_sub
.
eapply
Forall2_part_eq
.
intros
sd
τ₁
sd
τ₂.
unfold
flip
.
split
;
intros
H
.
-
repeat
red
;
simpl
;
subst
;
intuition
.
-
repeat
red
in
H
;
intuition
.
destruct
sd
τ₁;
destruct
sd
τ₂
;
simpl
in
* .
f_equal
;
trivial
.
apply
antisymmetry
;
auto
.
Qed.
Global
Instance
tdbindings_type_sub
:
Proper
(
eq
==>
tdbindings_sub
==>
impl
)
dbindings_type
.
Proof.
unfold
Proper
,
respectful
,
impl
;
intros
d
d
' ?
d
τ₁
d
τ₂
sub
typ
;
subst
d
'.
unfold
tdbindings_sub
,
dbindings_type
in
*.
eapply
Forall2_trans_relations_weak
;
eauto
.
simpl
.
destruct
a
;
destruct
b
;
destruct
c
;
simpl
;
intuition
;
subst
;
trivial
.
rewrite
H3
in
H2
.
trivial
.
Qed.
Section
unlocalize
.
Require
Import
TBindings
.
Definition
unlocalize_tdbindings
(
binds
:
tdbindings
) :
tbindings
:=
map
(
fun
xy
=> ((
fst
xy
),
unlocalize_drtype
(
snd
xy
)))
binds
.
End
unlocalize
.
Section
vdbindings
.
Require
Import
TUtil
TOpsInfer
.
Require
Import
EquivDec
.
Definition
dt_to_v
(
bind
:
string
*
drtype
) :
string
*
dlocalization
:=
match
snd
bind
with
|
Tlocal
_
=> (
fst
bind
,
Vlocal
)
|
Tdistr
_
=> (
fst
bind
,
Vdistr
)
end
.
Definition
vdbindings_of_tdbindings
(
binds
:
tdbindings
) :
vdbindings
:=
map
dt_to_v
binds
.
Definition
v_and_t_to_dt_opt
(
v
:
dlocalization
) (
t
:
rtype
) :
option
drtype
:=
match
v
with
|
Vlocal
=>
Some
(
Tlocal
t
)
|
Vdistr
=>
lift
Tdistr
(
tuncoll
t
)
end
.
Definition
v_and_t_to_dt
(
v
:
dlocalization
) (
t
:
rtype
) :
drtype
:=
match
v
with
|
Vlocal
=>
Tlocal
t
|
Vdistr
=>
Tdistr
t
end
.
End
vdbindings
.
End
TDBindings
.
Hint
Resolve
dbindings_type_Forall_normalized
.