Module OptimizerLogger


Section OptimizerLogger.

  Require Import String List.
  Require Import Setoid.
  Require Import Equivalence.

  Require Import Utils.
  Require Import OptimizerStep.
  
  Class optimizer_logger (Name:Set) (D:Set)
    := mk_optimizer_logger {
           optimizer_logger_token_type:Set
           ; logStartPass (name:Name) (input:D) : optimizer_logger_token_type
           ; logStep (t:optimizer_logger_token_type) (name:Name) (input output:D) :
               optimizer_logger_token_type
           ; logEndPass (t:optimizer_logger_token_type) (output:D):
               optimizer_logger_token_type
         }.

  Definition hide_use {A B} (x:A) (y:B) := y.
  Lemma hide_use_eq {A B} (x:A) (y:B) : hide_use x y = y.
Proof.
    reflexivity.
  Qed.
  Opaque hide_use.
  
  Instance silent_optimizer_logger (Name:Set) (D:Set) : optimizer_logger Name D
    :=
    {
      optimizer_logger_token_type := bool
      ; logStartPass name input := true
      ; logStep t name input output := t
      ; logEndPass t output := t
    } .

      Definition run_optimizer_step {lang:Set}
               {logger:optimizer_logger string lang}
               (step:OptimizerStep lang)
               (input:optimizer_logger_token_type*lang)
    : optimizer_logger_token_type*lang
    := let res := (optim_step_step step) (snd input) in
       let log := logStep (fst input) (optim_step_name step) (snd input) res in
       (log, res).

    Lemma run_optimizer_step_result
          {lang:Set}
          {logger:optimizer_logger string lang}
          (step:OptimizerStep lang)
          (input:optimizer_logger_token_type*lang) :
      snd (run_optimizer_step step input) = (optim_step_step step) (snd input).
Proof.
    unfold run_optimizer_step.
    simpl; reflexivity.
  Qed.

  Definition run_optimizer_steps
             {lang:Set}
             {logger:optimizer_logger string lang}
             (passName:string)
             (steps:list (OptimizerStep lang))
             (input:lang) : lang
    := let tok := logStartPass passName input in
       let '(tok2, res) := fold_right run_optimizer_step (tok,input) steps in
       let tok := logEndPass tok2 res in
       hide_use tok res.

    Lemma run_optimizer_steps_fold_correct
        {lang:Set}
        {R:relation lang}
        {pre:PreOrder R}
        {logger:optimizer_logger string lang}
        (steps:list (OptimizerStep lang))
        (tok:optimizer_logger_token_type)
        (input:lang) :
      optim_list_correct R steps ->
      R input (snd (fold_right run_optimizer_step (tok,input) steps)).
Proof.
      revert input tok.
 reverse induction *)      induction steps using rev_ind; simpl; intros input tok pf.
      - reflexivity.
      - rewrite fold_right_app.
        simpl.
        apply Forall_app_inv in pf.
        destruct pf as [pf1 pf2].
        invcs pf2.
        etransitivity; eauto.
    Qed.
    
  Lemma run_optimizer_steps_correct
        {lang:Set}
        {R:relation lang}
        {pre:PreOrder R}
        {logger:optimizer_logger string lang}
        (passName:string)
        (steps:list (OptimizerStep lang))
        (input:lang) :
    optim_list_correct R steps ->
    R input (run_optimizer_steps passName steps input).
Proof.
    unfold run_optimizer_steps.
    simpl.
    intros pf.
    generalize (run_optimizer_steps_fold_correct steps (logStartPass passName input) input pf).
    match_destr.
  Qed.

  Definition run_phase {lang:Set}
             {logger:optimizer_logger string lang}
             (mapdeep:(lang->lang)->lang->lang)
             (cost:lang->nat)
             (lang_optim_list:list (OptimizerStep lang))
             (phaseName:string)
             (optims:list string)
             (iterationsBetweenCostCheck:nat)
    : lang -> lang :=
      iter_cost
      (iter
         (mapdeep
            (run_optimizer_steps phaseName
                                 (project_optims lang_optim_list optims)))
         iterationsBetweenCostCheck) cost.

  Lemma run_phase_correctness {lang:Set} {R:relation lang} {pre:PreOrder R}
        {logger:optimizer_logger string lang}
        {mapdeep:(lang->lang)->lang->lang}
        (mapdeep_correct:
           forall f, (forall a, R a (f a)) -> forall a, R a (mapdeep f a))
        (cost:lang->nat)
        {lang_optim_list:list (OptimizerStep lang)}
        (lang_optim_list_correct:optim_list_correct R lang_optim_list)
        (phaseName:string)
        (optims:list string)
        (iterationsBetweenCostCheck:nat) p :
    R p (run_phase mapdeep cost lang_optim_list
                   phaseName optims iterationsBetweenCostCheck p).
Proof.
    unfold run_phase.
    apply iter_cost_trans; trivial; intros.
    apply iter_trans; trivial; intros.
    apply mapdeep_correct; intros.
    apply run_optimizer_steps_correct.
    apply project_optims_list_correct.
    apply lang_optim_list_correct.
  Qed.

  Section multiphase.
    Definition optim_phases_config : Set :=
      list (string * list string * nat).
  
    Fixpoint run_phases {lang:Set}
               {logger:optimizer_logger string lang}
               (mapdeep:(lang->lang)->lang->lang)
               (cost:lang->nat)
               (lang_optim_list:list (OptimizerStep lang))
               (opc: optim_phases_config)
               (q:lang)
      : lang :=
      match opc with
      | nil => q
      | (phaseName,optims,iterationsBetweenCostCheck) :: opc' =>
        let q :=
            run_phase mapdeep cost lang_optim_list phaseName optims iterationsBetweenCostCheck q
        in
        run_phases mapdeep cost lang_optim_list opc' q
      end.
    
    Lemma run_phases_correctness {lang:Set} {R:relation lang} {pre:PreOrder R}
          {logger:optimizer_logger string lang}
          {mapdeep:(lang->lang)->lang->lang}
          (mapdeep_correct:
             forall f, (forall a, R a (f a)) -> forall a, R a (mapdeep f a))
          (cost:lang->nat)
          {lang_optim_list:list (OptimizerStep lang)}
          (lang_optim_list_correct:optim_list_correct R lang_optim_list)
          (opc: optim_phases_config) p :
      R p (run_phases mapdeep cost lang_optim_list
                      opc p).
Proof.
      revert p.
      induction opc; simpl; [reflexivity|]; intros.
      destruct a; simpl.
      destruct p0; simpl.
      specialize (IHopc (run_phase mapdeep cost lang_optim_list s l n p)).
      generalize (run_phase_correctness mapdeep_correct cost lang_optim_list_correct s l n p).
      intros; destruct pre; eauto.
    Qed.
  End multiphase.

End OptimizerLogger.