Module OptimizerStep
Section
OptimizerStep
.
Require
Import
String
.
Require
Import
List
.
Require
Import
Setoid
.
Require
Import
Equivalence
EquivDec
.
Require
Import
Utils
.
Record
OptimizerStep
(
lang
:
Set
) :
Set
:=
mkOptimizerStep
{
optim_step_name
:
String.string
;
optim_step_description
:
String.string
;
optim_step_lemma
:
String.string
;
optim_step_step
(
input
:
lang
):
lang
}.
Global
Arguments
mkOptimizerStep
{
lang
}
optim_step_name
optim_step_description
optim_step_lemma
optim_step_step
.
Global
Arguments
optim_step_name
{
lang
}
o
.
Global
Arguments
optim_step_description
{
lang
}
o
.
Global
Arguments
optim_step_lemma
{
lang
}
o
.
Global
Arguments
optim_step_step
{
lang
}
o
input
.
Record
OptimizerStepModel
{
lang
:
Set
} (
R
:
relation
lang
) :=
mkOptimizerStepModel
{
optim_step_model_step
:
OptimizerStep
lang
;
optim_step_model_step_correct
(
input
:
lang
):
R
input
(
optim_step_step
optim_step_model_step
input
)
}.
Global
Arguments
mkOptimizerStepModel
{
lang
} {
R
}
optim_step_model_step
optim_step_model_step_correct
.
Definition
optim_model_list_complete
{
lang
:
Set
} {
R
:
relation
lang
}
(
optim_list
:
list
(
OptimizerStep
lang
))
(
optim_correct_list
:
list
(
OptimizerStepModel
R
))
:=
forall
x
,
In
x
optim_list
->
exists
y
,
In
y
optim_correct_list
/\
optim_step_model_step
_
y
=
x
.
Definition
optim_list_correct
{
lang
:
Set
} (
R
:
relation
lang
)
(
optim_list
:
list
(
OptimizerStep
lang
))
:=
Forall
(
fun
o
=>
forall
input
,
R
input
(
optim_step_step
o
input
))
optim_list
.
Lemma
optim_list_correct_from_model
{
lang
:
Set
} {
R
:
relation
lang
}
{
optim_list
:
list
(
OptimizerStep
lang
)}
{
optim_correct_list
:
list
(
OptimizerStepModel
R
)} :
optim_model_list_complete
optim_list
optim_correct_list
->
optim_list_correct
R
optim_list
.
Proof.
unfold
optim_model_list_complete
,
optim_list_correct
.
rewrite
Forall_forall
.
intros
pf
?
inn
.
destruct
(
pf
_
inn
)
as
[
cor
[
_
?]].
subst
.
apply
optim_step_model_step_correct
.
Qed.
Definition
optim_list_distinct
{
lang
:
Set
}
(
optim_list
:
list
(
OptimizerStep
lang
))
:=
NoDup
(
map
optim_step_name
optim_list
).
Lemma
optim_list_distinct_dec
{
lang
:
Set
}
(
optim_list
:
list
(
OptimizerStep
lang
))
: {
optim_list_distinct
optim_list
} + {~
optim_list_distinct
optim_list
}.
Proof.
apply
NoDup_dec
.
Defined.
Definition
optim_list_distinct_holds
{
lang
:
Set
}
(
optim_list
:
list
(
OptimizerStep
lang
))
:=
holds
(
optim_list_distinct_dec
optim_list
).
Lemma
optim_list_distinct_prover
{
lang
:
Set
}
(
optim_list
:
list
(
OptimizerStep
lang
))
(
pf
:
optim_list_distinct_holds
optim_list
) :
optim_list_distinct
optim_list
.
Proof.
generalize
(
optim_list_distinct_dec
optim_list
).
unfold
optim_list_distinct_holds
,
holds
,
is_true
in
*.
match_destr_in
pf
.
Qed.
Fixpoint
optim_lookup
{
lang
:
Set
}
(
optim_list
:
list
(
OptimizerStep
lang
)) (
name
:
string
)
:
option
(
OptimizerStep
lang
)
:=
match
optim_list
with
|
nil
=>
None
|
opt
::
rest
=>
if
optim_step_name
opt
==
name
then
Some
opt
else
optim_lookup
rest
name
end
.
Lemma
optim_lookup_name_correct
{
lang
:
Set
}
(
optim_list
:
list
(
OptimizerStep
lang
)) (
name
:
string
) (
o
:
OptimizerStep
lang
)
:
optim_lookup
optim_list
name
=
Some
o
->
optim_step_name
o
=
name
.
Proof.
induction
optim_list
;
simpl
;
intros
eqq
.
-
invcs
eqq
.
-
match_destr_in
eqq
.
+
invcs
eqq
;
trivial
.
+
auto
.
Qed.
Lemma
optim_lookup_some_in
{
lang
:
Set
}
(
optim_list
:
list
(
OptimizerStep
lang
)) (
name
:
string
) (
o
:
OptimizerStep
lang
)
:
optim_lookup
optim_list
name
=
Some
o
->
In
o
optim_list
.
Proof.
induction
optim_list
;
simpl
;
intros
eqq
.
-
invcs
eqq
.
-
match_destr_in
eqq
.
+
invcs
eqq
;
auto
.
+
auto
.
Qed.
Lemma
optim_lookup_none_nin
{
lang
:
Set
}
(
optim_list
:
list
(
OptimizerStep
lang
)) (
name
:
string
)
:
optim_lookup
optim_list
name
=
None
->
forall
o
,
In
o
optim_list
->
optim_step_name
o
<>
name
.
Proof.
induction
optim_list
;
simpl
;
intros
eqq
.
-
intuition
.
-
match_destr_in
eqq
.
intros
o
[
eqq2
|
inn
].
+
subst
;
intuition
.
+
auto
.
Qed.
Definition
optim_lookup_as_list
{
lang
:
Set
}
(
optim_list
:
list
(
OptimizerStep
lang
)) (
name
:
string
)
:
list
(
OptimizerStep
lang
)
:=
match
optim_lookup
optim_list
name
with
|
None
=>
nil
|
Some
res
=>
res
::
nil
end
.
Definition
valid_optims
{
lang
:
Set
}
(
optim_list
:
list
(
OptimizerStep
lang
)) (
names
:
list
string
) :
list
string
*
list
string
:=
partition
(
fun
x
=>
if
optim_lookup
optim_list
x
then
true
else
false
)
names
.
Definition
project_optims
{
lang
:
Set
}
(
optim_list
:
list
(
OptimizerStep
lang
)) (
names
:
list
string
)
:=
flat_map
(
optim_lookup_as_list
optim_list
)
names
.
Lemma
project_optims_incl
{
lang
:
Set
}
(
optim_list
:
list
(
OptimizerStep
lang
)) (
names
:
list
string
) :
incl
(
project_optims
optim_list
names
)
optim_list
.
Proof.
unfold
project_optims
.
red
;
intros
o
inn
.
apply
in_flat_map
in
inn
.
destruct
inn
as
[
name
[
inn
inl
]].
unfold
optim_lookup_as_list
in
inl
.
match_case_in
inl
; [
intros
?
eqq
|
intros
eqq
]
;
rewrite
eqq
in
inl
;
simpl
in
*;
intuition
.
subst
.
apply
optim_lookup_some_in
in
eqq
;
trivial
.
Qed.
Lemma
project_optims_model_list_complete
{
lang
:
Set
} {
R
:
relation
lang
}
{
optim_list
:
list
(
OptimizerStep
lang
)}
{
optim_correct_list
:
list
(
OptimizerStepModel
R
)}
(
pf
:
optim_model_list_complete
optim_list
optim_correct_list
)
(
names
:
list
string
)
:
optim_model_list_complete
(
project_optims
optim_list
names
)
optim_correct_list
.
Proof.
red
;
intros
o
inn
.
apply
project_optims_incl
in
inn
.
auto
.
Qed.
Lemma
project_optims_list_correct
{
lang
:
Set
} {
R
:
relation
lang
}
{
optim_list
:
list
(
OptimizerStep
lang
)}
(
pf
:
optim_list_correct
R
optim_list
)
(
names
:
list
string
)
:
optim_list_correct
R
(
project_optims
optim_list
names
).
Proof.
unfold
optim_list_correct
in
*.
rewrite
Forall_forall
in
*.
intros
?
inn
.
apply
project_optims_incl
in
inn
.
auto
.
Qed.
End
OptimizerStep
.
Ltac
optim_correct_list_complete_try_pf_match
pf
step
:=
match
eval
simpl
in
(
optim_step_model_step
_
pf
)
with
|
step
=>
idtac
end
.
Ltac
optim_correct_list_complete_pf_finder
step
l
:=
match
l
with
| (?
pf
=
_
) \/ ?
rest
=>
(
optim_correct_list_complete_try_pf_match
pf
step
;
instantiate
(1:=
pf
); (
split
;
tauto
;
simpl
;
trivial
))
|| (
optim_correct_list_complete_pf_finder
step
rest
)
| (?
pf
=
_
) => (
optim_correct_list_complete_try_pf_match
pf
step
;
instantiate
(1:=
pf
); (
split
;
tauto
;
simpl
;
trivial
))
end
.
Ltac
optim_correct_list_complete_step
steps
:=
match
type
of
steps
with
| ?
step
\/ ?
rest
=>
destruct
steps
as
[? |
steps
]
; [
eexists
;
match
step
with
?
name
=
_
=>
match
goal
with
[|- ?
l
/\ ?
pf
] =>
optim_correct_list_complete_pf_finder
name
l
end
end
|
idtac
]
|
False
=>
inversion
steps
end
.
Ltac
optim_correct_list_complete_prover
:=
unfold
optim_model_list_complete
;
simpl
;
intros
?
steps
;
repeat
optim_correct_list_complete_step
steps
.