Module Qcert.cNNRC.Typing.TcNNRCEq


Section TcNNRCEq.
  Require Import Equivalence.
  Require Import Morphisms.
  Require Import Setoid.
  Require Import EquivDec.
  Require Import Program.
  Require Import String.
  Require Import List.
  Require Import Arith.
  Require Import Utils.
  Require Import CommonSystem.
  Require Import cNNRC.
  Require Import cNNRCEq.
  Require Import TcNNRC.



  Context {m:basic_model}.
  Contextcenv:tbindings}.

  Definition tnncr_core_rewrites_to (e1 e2:nnrc) : Prop :=
    forallenv : tbindings) (τout:rtype),
      nnrc_core_type τcenv τenv e1 τout ->
      (nnrc_core_type τcenv τenv e2 τout)
      /\ (forall (cenv env:bindings),
             bindings_type cenv τcenv ->
             bindings_type env τenv ->
             nnrc_core_eval brand_relation_brands cenv env e1
             = nnrc_core_eval brand_relation_brands cenv env e2).

  Notation "e1 ⇒ᶜᶜ e2" := (tnncr_core_rewrites_to e1 e2) (at level 80).

  Open Scope nnrc_scope.

  Lemma data_normalized_bindings_type_map env τenv :
    bindings_type env τenv ->
    Forall (data_normalized brand_relation_brands) (map snd env).
Proof.
    rewrite Forall_map.
    apply bindings_type_Forall_normalized.
  Qed.

  Hint Resolve data_normalized_bindings_type_map.
  
  Lemma nnrc_base_rewrites_typed_with_untyped (e1 e2:nnrc) :
    e1 ≡ᶜᶜ e2 ->
    (forallenv: tbindings}
            {τout:rtype},
        nnrc_core_type τcenv τenv e1 τout
        -> nnrc_core_type τcenv τenv e2 τout)
    -> e1 ⇒ᶜᶜ e2.
Proof.
    intros.
    unfold tnncr_core_rewrites_to; simpl; intros.
    split; auto 2; intros.
    apply H; eauto.
  Qed.


  Hint Constructors nnrc_core_type.
  Hint Constructors unary_op_type.
  Hint Constructors binary_op_type.

  Global Instance tnncr_core_rewrites_to_pre : PreOrder tnncr_core_rewrites_to.
Proof.
    constructor; red; intros.
    - unfold tnncr_core_rewrites_to; intros.
      split; try assumption; intros.
      reflexivity.
    - unfold tnncr_core_rewrites_to in *; intros.
      specialize (H τenv τout H1).
      elim H; clear H; intros.
      specialize (H0 τenv τout H).
      elim H0; clear H0; intros.
      split; try assumption; intros.
      rewrite (H2 cenv env); try assumption.
      rewrite (H3 cenv env); try assumption.
      reflexivity.
  Qed.
  

  Global Instance nnrc_base_var_tproper:
    Proper (eq ==> tnncr_core_rewrites_to) NNRCVar.
Proof.
    unfold Proper, respectful, tnncr_core_rewrites_to; intros.
    rewrite <- H.
    split; try assumption.
    intros; reflexivity.
  Qed.
  

  Global Instance nnrc_base_const_tproper:
    Proper (eq ==> tnncr_core_rewrites_to) NNRCConst.
Proof.
    unfold Proper, respectful, tnncr_core_rewrites_to; intros.
    rewrite <- H.
    split; try assumption.
    intros; reflexivity.
  Qed.


  Global Instance nnrc_base_binop_tproper:
    Proper (eq ==> tnncr_core_rewrites_to
               ==> tnncr_core_rewrites_to
               ==> tnncr_core_rewrites_to) NNRCBinop.
Proof.
    unfold Proper, respectful, tnncr_core_rewrites_to; intros.
    rewrite H in *; clear H.
    inversion H2; clear H2; subst.
    econstructor; eauto.
    specialize (H0 τenv τ₁ H8); elim H0; clear H0 H8; intros.
    specialize (H1 τenv τ₂ H9); elim H1; clear H1 H9; intros.
    econstructor; eauto; intros.
    intros.
    specialize (H0 τenv τ₁ H8); elim H0; clear H0 H8; intros.
    specialize (H1 τenv τ₂ H9); elim H1; clear H1 H9; intros.
    simpl.
    rewrite (H3 cenv env H H2); rewrite (H4 cenv env H H2); reflexivity.
  Qed.
  

  Global Instance nnrc_base_unop_tproper :
    Proper (eq ==> tnncr_core_rewrites_to ==> tnncr_core_rewrites_to) NNRCUnop.
Proof.
    unfold Proper, respectful, tnncr_core_rewrites_to; intros.
    rewrite H in *; clear H.
    inversion H1; clear H1; subst.
    econstructor; eauto.
    econstructor; eauto.
    specialize (H0 τenv τ₁ H6); elim H0; clear H0 H6; intros; assumption.
    intros.
    specialize (H0 τenv τ₁ H6); elim H0; clear H0 H6; intros.
    simpl. rewrite (H2 cenv env H H1); reflexivity.
  Qed.


  Global Instance nnrc_base_let_tproper :
    Proper (eq ==> tnncr_core_rewrites_to ==> tnncr_core_rewrites_to ==> tnncr_core_rewrites_to) NNRCLet.
Proof.
    unfold Proper, respectful, tnncr_core_rewrites_to; intros.
    inversion H2; clear H2; subst.
    specialize (H0 τenv τ₁ H8); elim H0; clear H0 H8; intros.
    specialize (H1 ((y, τ₁) :: τenv) τout H9); elim H1; clear H1 H9; intros.
    econstructor; eauto.
    intros; simpl.
    rewrite (H0 cenv env H3 H4).
    case_eq (nnrc_core_eval brand_relation_brands cenv env y0); intros; try reflexivity.
    rewrite (H2 cenv ((y, d) :: env) H3); try reflexivity.
    unfold bindings_type.
    apply Forall2_cons; try assumption.
    simpl; split; try reflexivity.
    generalize (@typed_nnrc_core_yields_typed_data _ _ τ₁ cenv env τenv y0 H3 H4 H); intros.
    elim H6; intros.
    rewrite H5 in H7.
    elim H7; clear H7; intros.
    inversion H7; assumption.
  Qed.
    

  Require Import TData.
  
  Lemma dcoll_wt (l:list data) (τ:rtype) (τenv:tbindings) (cenv env:bindings) (e:nnrc):
    bindings_type cenv τcenv ->
    bindings_type env τenv ->
    nnrc_core_type τcenv τenv e (Coll τ) ->
    nnrc_core_eval brand_relation_brands cenv env e = Some (dcoll l) ->
    forall x:data, In x l -> (data_type x τ).
Proof.
    intros.
    generalize (@typed_nnrc_core_yields_typed_data _ _ (Coll τ) cenv env τenv e H H0 H1); intros.
    elim H4; clear H4; intros.
    elim H4; clear H4; intros.
    rewrite H4 in H2.
    inversion H2; clear H2.
    subst.
    dependent induction H5.
    rtype_equalizer.
    subst.
    rewrite Forall_forall in H2.
    apply (H2 x0 H3).
  Qed.

  Global Instance nnrc_base_for_tproper :
    Proper (eq ==> tnncr_core_rewrites_to ==> tnncr_core_rewrites_to ==> tnncr_core_rewrites_to) NNRCFor.
Proof.
    unfold Proper, respectful, tnncr_core_rewrites_to; intros.
    inversion H2; clear H2; subst.
    specialize (H0 τenv (Coll τ₁) H8); elim H0; clear H0 H8; intros.
    specialize (H1 ((y, τ₁) :: τenv) τ₂ H9); elim H1; clear H1 H9; intros.
    econstructor; eauto.
    intros; simpl.
    rewrite (H0 cenv env H3 H4).
    case_eq (nnrc_core_eval brand_relation_brands cenv env y0); intros; try reflexivity.
    destruct d; try reflexivity.
    assert (forall x, In x l -> (data_type x τ₁)) by
        (apply (dcoll_wt l τ₁ τenv cenv env y0); assumption).
    clear H5 H.
    induction l; try reflexivity.
    simpl in *.
    assert (forall x : data, In x l -> data_type x τ₁)
      by (intros; apply (H6 x); right; assumption).
    specialize (IHl H); clear H.
    rewrite (H2 cenv ((y, a) :: env) H3).
    destruct (nnrc_core_eval brand_relation_brands cenv ((y, a) :: env) y1); try reflexivity.
    destruct ((lift_map (fun d1 : data => nnrc_core_eval brand_relation_brands cenv ((y, d1) :: env) x1) l)); destruct ((lift_map (fun d1 : data => nnrc_core_eval brand_relation_brands cenv ((y, d1) :: env) y1) l)); simpl in *; try congruence.
    unfold bindings_type.
    apply Forall2_cons; try assumption.
    simpl; split; try reflexivity.
    apply (H6 a); left; reflexivity.
  Qed.
    

  Global Instance nnrc_base_if_tproper :
    Proper (tnncr_core_rewrites_to ==> tnncr_core_rewrites_to
                             ==> tnncr_core_rewrites_to
                             ==> tnncr_core_rewrites_to) NNRCIf.
Proof.
    unfold Proper, respectful, tnncr_core_rewrites_to; intros.
    inversion H2; clear H2; subst.
    specialize (H τenv Bool H7); elim H; clear H H7; intros.
    specialize (H0 τenv τout H9); elim H0; clear H0 H9; intros.
    specialize (H1 τenv τout H10); elim H1; clear H1 H10; intros.
    econstructor; eauto.
    intros; simpl.
    rewrite (H2 cenv env H5 H6). rewrite (H3 cenv env H5 H6). rewrite (H4 cenv env H5 H6).
    reflexivity.
  Qed.


  Global Instance nnrc_base_either_tproper :
    Proper (tnncr_core_rewrites_to ==> eq ==> tnncr_core_rewrites_to ==> eq ==> tnncr_core_rewrites_to ==> tnncr_core_rewrites_to) NNRCEither.
Proof.
    unfold Proper, respectful, tnncr_core_rewrites_to; intros.
    subst.
    inversion H4; clear H4; subst.
    destruct (H _ _ H10).
    destruct (H1 _ _ H11).
    destruct (H3 _ _ H12).
    clear H H1 H3.
    simpl.
    split; [eauto | ]; intros.
    rewrite H2; trivial.
    destruct (@typed_nnrc_core_yields_typed_data _ _ _ _ _ _ _ H H1 H0) as [?[??]].
    rewrite H3.
    apply data_type_Either_inv in H8.
    destruct H8 as [[?[??]]|[?[??]]]; subst.
    - apply (H5 _ _ H). constructor; simpl; intuition; eauto.
    - eapply (H7 _ _ H). constructor; simpl; intuition; eauto.
  Qed.

End TcNNRCEq.

Notation "e1 ⇒ᶜᶜ e2" := (tnncr_core_rewrites_to e1 e2) (at level 80).