Require Import String.
Require Import List.
Require Import Arith.
Require Import Program.
Require Import EquivDec.
Require Import Morphisms.
Require Import Utils.
Require Import DataSystem.
Require Import cNNRC.
Import ListNotations.
Local Open Scope list_scope.
Section TcNNRC.
Typing rules for cNNRC
Context {
m:
basic_model}.
Section typ.
Context (τ
constants:
tbindings).
Inductive nnrc_core_type :
tbindings ->
nnrc ->
rtype ->
Prop :=
|
type_cNNRCGetConstant {τ
out}
tenv s :
tdot τ
constants s =
Some τ
out ->
nnrc_core_type tenv (
NNRCGetConstant s) τ
out
|
type_cNNRCVar {τ}
tenv v :
lookup equiv_dec tenv v =
Some τ ->
nnrc_core_type tenv (
NNRCVar v) τ
|
type_cNNRCConst {τ}
tenv c :
data_type (
normalize_data brand_relation_brands c) τ ->
nnrc_core_type tenv (
NNRCConst c) τ
|
type_cNNRCBinop {τ₁ τ₂ τ}
tenv b e1 e2 :
binary_op_type b τ₁ τ₂ τ ->
nnrc_core_type tenv e1 τ₁ ->
nnrc_core_type tenv e2 τ₂ ->
nnrc_core_type tenv (
NNRCBinop b e1 e2) τ
|
type_cNNRCUnop {τ₁ τ}
tenv u e1 :
unary_op_type u τ₁ τ ->
nnrc_core_type tenv e1 τ₁ ->
nnrc_core_type tenv (
NNRCUnop u e1) τ
|
type_cNNRCLet {τ₁ τ₂}
v tenv e1 e2 :
nnrc_core_type tenv e1 τ₁ ->
nnrc_core_type ((
v,τ₁)::
tenv)
e2 τ₂ ->
nnrc_core_type tenv (
NNRCLet v e1 e2) τ₂
|
type_cNNRCFor {τ₁ τ₂}
v tenv e1 e2 :
nnrc_core_type tenv e1 (
Coll τ₁) ->
nnrc_core_type ((
v,τ₁)::
tenv)
e2 τ₂ ->
nnrc_core_type tenv (
NNRCFor v e1 e2) (
Coll τ₂)
|
type_cNNRCIf {τ}
tenv e1 e2 e3 :
nnrc_core_type tenv e1 Bool ->
nnrc_core_type tenv e2 τ ->
nnrc_core_type tenv e3 τ ->
nnrc_core_type tenv (
NNRCIf e1 e2 e3) τ
|
type_cNNRCEither {τ τ
l τ
r}
tenv ed xl el xr er :
nnrc_core_type tenv ed (
Either τ
l τ
r) ->
nnrc_core_type ((
xl,τ
l)::
tenv)
el τ ->
nnrc_core_type ((
xr,τ
r)::
tenv)
er τ ->
nnrc_core_type tenv (
NNRCEither ed xl el xr er) τ.
End typ.
Main lemma for the type correctness of NNNRC
Theorem typed_nnrc_core_yields_typed_data {τ
c} {τ} (
cenv env:
bindings) (
tenv:
tbindings) (
e:
nnrc) :
bindings_type cenv τ
c ->
bindings_type env tenv ->
nnrc_core_type τ
c tenv e τ ->
(
exists x, (
nnrc_core_eval brand_relation_brands cenv env e) =
Some x /\ (
data_type x τ)).
Proof.
intro Hcenv;
intros.
revert env H.
dependent induction H0;
simpl;
intros.
-
unfold tdot in *.
unfold edot in *.
destruct (
Forall2_lookupr_some Hcenv H)
as [? [
eqq1 eqq2]].
rewrite eqq1.
eauto.
-
unfold bindings_type in *.
dependent induction H0.
simpl in *;
congruence.
simpl in *.
destruct x;
simpl in *.
elim H0;
clear H0;
intros.
destruct y;
simpl in *.
rewrite H0 in *;
clear H0.
revert H.
elim (
equiv_dec v s0);
intros.
exists d.
inversion H.
rewrite H3 in *;
clear H3 H a.
split; [
reflexivity|
assumption].
specialize (
IHForall2 H);
clear H.
assumption.
-
exists (
normalize_data brand_relation_brands c).
split; [
reflexivity|
assumption].
-
specialize (
IHnnrc_core_type1 env H0);
specialize (
IHnnrc_core_type2 env H0).
elim IHnnrc_core_type1;
intros;
clear IHnnrc_core_type1;
elim IHnnrc_core_type2;
intros;
clear IHnnrc_core_type2.
elim H1;
clear H1;
intros.
elim H2;
clear H2;
intros.
rewrite H1;
rewrite H2.
simpl;
apply (@
typed_binary_op_yields_typed_data _ _ _ _ _ _ τ₁ τ₂ τ);
assumption.
-
specialize (
IHnnrc_core_type env H1).
elim IHnnrc_core_type;
intros;
clear IHnnrc_core_type.
elim H2;
clear H2;
intros.
rewrite H2;
clear H2.
simpl;
apply (@
typed_unary_op_yields_typed_data _ _ _ _ _ _ τ₁ τ);
assumption.
-
destruct (
IHnnrc_core_type1 _ H)
as [?[
re1 ?]].
destruct (
IHnnrc_core_type2 ((
v,
x)::
env))
as [?[
re2 ?]].
+
apply Forall2_cons;
intuition.
+
unfold var in *.
rewrite re1,
re2.
eauto.
-
specialize (
IHnnrc_core_type1 env H).
elim IHnnrc_core_type1;
intros;
clear IHnnrc_core_type1.
elim H0;
clear H0;
intros.
rewrite H0;
clear H0;
simpl.
dependent induction H1.
rewrite Forall_forall in *.
induction dl;
simpl in *.
+
exists (
dcoll []).
split; [
reflexivity|
apply dtcoll;
apply Forall_nil].
+
assert (
forall x :
data,
In x dl ->
data_type x r)
by (
intros;
apply (
H0 x0);
right;
assumption).
specialize (
IHdl H1);
clear H1.
elim IHdl;
intros;
clear IHdl.
elim H1;
clear H1;
intros.
unfold lift in H1.
unfold var in *.
generalize (
lift_map_data_exists
(
fun d1 :
data =>
nnrc_core_eval brand_relation_brands cenv ((
v,
d1) ::
env)
e2)
dl x0 H1);
intros.
elim H3;
clear H3;
intros.
elim H3;
clear H3;
intros.
rewrite H3.
rewrite <-
H4 in *;
clear H1 H3 H4;
simpl.
specialize (
IHnnrc_core_type2 ((
v,
a)::
env)).
assert (
bindings_type ((
v,
a) ::
env) ((
v, τ₁) ::
tenv)).
unfold bindings_type.
apply Forall2_cons;
try assumption.
simpl;
split;
try reflexivity.
assert (
r = τ₁)
by (
apply rtype_fequal;
assumption).
rewrite H1 in *;
clear H1 x.
apply (
H0 a);
left;
reflexivity.
specialize (
IHnnrc_core_type2 H1);
clear H1.
elim IHnnrc_core_type2;
clear IHnnrc_core_type2;
intros.
elim H1;
clear H1;
intros.
rewrite H1;
simpl.
exists (
dcoll (
x2::
x1));
split;
try reflexivity.
apply dtcoll.
rewrite Forall_forall;
simpl;
intros.
elim H4;
clear H4;
intros.
rewrite H4 in *;
assumption.
dependent induction H2.
rewrite Forall_forall in *.
assert (
r0 = τ₂)
by (
apply rtype_fequal;
assumption).
rewrite H5 in *;
clear H5.
apply (
H1 x4);
assumption.
-
specialize (
IHnnrc_core_type1 env H);
specialize (
IHnnrc_core_type2 env H);
specialize (
IHnnrc_core_type3 env H).
elim IHnnrc_core_type1;
intros;
clear IHnnrc_core_type1;
elim IHnnrc_core_type2;
intros;
clear IHnnrc_core_type2;
elim IHnnrc_core_type3;
intros;
clear IHnnrc_core_type3.
elim H0;
clear H0;
intros.
elim H1;
clear H1;
intros.
elim H2;
clear H2;
intros.
rewrite H0.
simpl.
dependent induction H3.
destruct b.
+
rewrite H1.
exists x0;
split; [
reflexivity|
assumption].
+
rewrite H2.
exists x1;
split; [
reflexivity|
assumption].
-
destruct (
IHnnrc_core_type1 _ H)
as [
dd [
evald typd]].
apply data_type_Either_inv in typd.
rewrite evald.
destruct typd as [[
ddl[?
typd]]|[
ddr[?
typd]]];
subst.
+
destruct (
IHnnrc_core_type2 ((
xl,
ddl)::
env));
unfold bindings_type in *;
auto.
+
destruct (
IHnnrc_core_type3 ((
xr,
ddr)::
env));
unfold bindings_type in *;
auto.
Qed.
Global Instance nnrc_core_type_lookup_equiv_prop :
Proper (
eq ==>
lookup_equiv ==>
eq ==>
eq ==>
iff)
nnrc_core_type.
Proof.
cut (
Proper (
eq ==>
lookup_equiv ==>
eq ==>
eq ==>
impl)
nnrc_core_type);
unfold Proper,
respectful,
lookup_equiv,
iff,
impl;
intros;
subst;
[
intuition;
eauto | ].
rename y1 into e.
rename y2 into τ.
rename x0 into b1.
rename y0 into b2.
revert b1 b2 τ
H0 H3.
induction e;
simpl;
inversion 2;
subst;
econstructor;
eauto 3.
-
rewrite <-
H0;
trivial.
-
eapply IHe2;
try eassumption;
intros.
simpl;
match_destr.
-
eapply IHe2;
try eassumption;
intros.
simpl;
match_destr.
-
eapply IHe2;
try eassumption;
intros.
simpl;
match_destr.
-
eapply IHe3;
try eassumption;
intros.
simpl;
match_destr.
Qed.
Section Top.
Inductive nnrc_core_type_top :
tbindings ->
nnrc ->
rtype ->
Prop :=
|
type_cNNRC_top :
forall tenv e τ,
nnrc_core_type tenv nil e τ ->
nnrc_core_type_top tenv e τ.
End Top.
End TcNNRC.
Ltac nnrc_core_inverter :=
match goal with
| [
H:
Coll _ =
Coll _ |-
_] =>
inversion H;
clear H
| [
H:
proj1_sig ?τ₁ =
Coll₀ (
proj1_sig ?τ₂) |-
_] =>
rewrite (
Coll_right_inv τ₁ τ₂)
in H;
subst
| [
H:
Coll₀ (
proj1_sig ?τ₂) =
proj1_sig ?τ₁ |-
_] =>
symmetry in H
| [
H:
nnrc_core_type _ _ (
NNRCVar _)
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_core_type _ _ (
NNRCConst _)
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_core_type _ _ (
NNRCBinop _ _ _ )
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_core_type _ _ (
NNRCUnop _ _ )
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_core_type _ _ (
NNRCLet _ _ _ )
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_core_type _ _ (
NNRCFor _ _ _ )
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_core_type _ _ (
NNRCIf _ _ _ )
_ |-
_ ] =>
inversion H;
clear H
| [
H:
nnrc_core_type _ _ (
NNRCEither _ _ _ _ _ )
_ |-
_ ] =>
inversion H;
clear H
| [
H: (
_,
_) = (
_,
_) |-
_ ] =>
inversion H;
clear H
| [
H:
map (
fun x2 :
string * {τ₀ :
rtype₀ |
wf_rtype₀ τ₀ =
true} =>
(
fst x2,
proj1_sig (
snd x2))) ?
x0 =
nil |-
_] =>
apply (
map_rtype_nil x0)
in H;
simpl in H;
subst
| [
H: (
map
(
fun x :
string * {τ₀ :
rtype₀ |
wf_rtype₀ τ₀ =
true} =>
(
fst x,
proj1_sig (
snd x)))
_)
=
(
map
(
fun x' :
string * {τ₀' :
rtype₀ |
wf_rtype₀ τ₀' =
true} =>
(
fst x',
proj1_sig (
snd x')))
_) |-
_ ] =>
apply map_rtype_fequal in H;
trivial
| [
H:
Rec _ _ _ =
Rec _ _ _ |-
_ ] =>
generalize (
Rec_inv H);
clear H;
intro H;
try subst
| [
H:
context [(
_::
nil) =
map
(
fun x :
string * {τ₀ :
rtype₀ |
wf_rtype₀ τ₀ =
true} =>
(
fst x,
proj1_sig (
snd x)))
_] |-
_] =>
symmetry in H
| [
H:
context [
map
(
fun x :
string * {τ₀ :
rtype₀ |
wf_rtype₀ τ₀ =
true} =>
(
fst x,
proj1_sig (
snd x)))
_ = (
_::
nil) ] |-
_] =>
apply map_eq_cons in H;
destruct H as [? [? [? [??]]]]
| [
H:
nnrc_core_type _ _ _ (
snd ?
x) |-
_ ] =>
destruct x
| [
H:
Coll₀
_ =
Coll₀
_ |-
_ ] =>
inversion H;
clear H
| [
H:
Rec₀
_ _ =
Rec₀
_ _ |-
_ ] =>
inversion H;
clear H
| [
H:
unary_op_type OpBag _ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unary_op_type OpFlatten _ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unary_op_type (
OpRec _)
_ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unary_op_type (
OpDot _)
_ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unary_op_type (
OpRecProject _)
_ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unary_op_type (
OpRecRemove _)
_ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unary_op_type OpLeft _ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
unary_op_type OpRight _ _ |-
_ ] =>
inversion H;
clear H;
subst
| [
H:
binary_op_type OpRecConcat _ _ _ |-
_ ] =>
inversion H;
clear H
| [
H:
binary_op_type OpAnd _ _ _ |-
_ ] =>
inversion H;
clear H
| [
H:
binary_op_type OpRecMerge _ _ _ |-
_ ] =>
inversion H;
clear H
| [
H:
context [@
equiv_dec ?
a ?
b ?
c ?
d ?
v ?
v] |-
_]
=>
destruct (@
equiv_dec a b c d v v); [ |
congruence]
| [
H:
context [
string_eqdec ?
v ?
v] |-
_]
=>
destruct (
string_eqdec v v); [ |
congruence]
| [
H:
context [
string_dec ?
v ?
v] |-
_]
=>
destruct (
string_dec v v); [ |
congruence]
| [
H:
context [
string_dec ?
v ?
v] |-
_]
=>
destruct (
string_dec v v); [ |
congruence]
| [|-
context [@
equiv_dec ?
a ?
b ?
c ?
d ?
v ?
v] ]
=>
destruct (@
equiv_dec a b c d v v); [ |
congruence]
| [|-
context [
string_eqdec ?
v ?
v]]
=>
destruct (
string_eqdec v v); [ |
congruence]
| [|-
context [
string_dec ?
v ?
v]]
=>
destruct (
string_dec v v); [ |
congruence]
| [|-
context [
string_dec ?
v ?
v]]
=>
destruct (
string_dec v v); [ |
congruence]
| [
H:
equiv ?
v ?
v |-
_] =>
clear H
| [
H:?
v = ?
v |-
_] =>
clear H
| [
H:
Some _ =
Some _ |-
_ ]
=>
inversion H;
clear H
end;
try rtype_equalizer;
try assumption;
try subst;
simpl in *;
try nnrc_core_inverter.
Ltac nnrc_core_input_well_typed :=
repeat progress
match goal with
| [
HO:
nnrc_core_type ?Γ
c ?Γ ?
op ?τ
out,
HC:
bindings_type ?
cenv ?Γ
c,
HE:
bindings_type ?
env ?Γ
|-
context [(
nnrc_core_eval brand_relation_brands ?
cenv ?
env ?
op)]] =>
let xout :=
fresh "
dout"
in
let xtype :=
fresh "τ
out"
in
let xeval :=
fresh "
eout"
in
destruct (
typed_nnrc_core_yields_typed_data cenv env Γ
op HC HE HO)
as [
xout [
xeval xtype]];
rewrite xeval in *;
simpl
end.