
Handling Environments in a Nested Relational

Algebra with Combinators and an

Implementation in a Verified Query Compiler

Joshua Auerbach, Martin Hirzel, Louis Mandel, Avi Shinnar and Jérôme Siméon

IBM T.J. Watson Research Center

ACM SIGMOD, May 2017



1. Verified Query Compiler

Why?

� Bugs are costly, security & privacy, guarantee access control, ...

� Define and check new optimizations

� Specify and compile new languages (e.g., DSLs)

How?

� Implemented with the Coq Proof Assistant

� Proof that the compiler preserves semantic is machine-checked

2



1. Verified Query Compiler

Some recent successes:

� CompCert (C compiler) ; Yxv6 (file system)

� seL4 (secure microkernel) ; HACMS program (secure drones)

Database-related: (Also: Cosette at SIGMOD’2017)

� DataCert [ESOP’2014]; mini-XQuery [CPP’2011]; RDBMS [POPL’2010]

� Optimizer Generator in Coko-Kola Project [SIGMOD 1996,1998...]

3



1. Verified Query Compiler

SQL:

SELECT *

FROM (SELECT name,age FROM employees

UNION ALL

SELECT name,age FROM students) AS persons

WHERE age = 32;

OQL (yes ODMG one):

define view as

select struct(name:c->name, purchased: p->name)

from c in Clients, p in Purchases

where p->cid = c->id;

select x.name from x in view where x.purchased = "Tomatoe"
4



1. Verified Query Compiler

NRAλ:

Customers.filter{ p => p.age = 32 }.map{ p => p.salary }.avg()

IBM’s ODM Insights Designer Rules:

define ’test05’ as detailed below, evaluated every minute.

definitions

set ’test05’ to the number of Customers,

where the age of each Customer equals 32;

use ’test05’ as the result.

5



1. Verified Query Compiler

� Like any other query compiler:

� Source to AST to Logical Algebra to Physical Plan to Code

� Emitted code executed by runtime (e.g., JVM, Database)

� But:

� Each intermediate language needs a complete formal semantics

� Logical: Nested Relational Algebra (from Cluet & Moerkotte)

� ”Physical”: Named Nested Relational Calculus (from Van den Bussche

& Vansummeren).
6



1. Verified Query Compiler

Lemma tselect_union_distr q0 q1 q2 : (* Equivalence *)

σ⟨ q0 ⟩(q1 ∪ q2) ⇒ σ⟨ q0 ⟩(q1) ∪ σ⟨ q0 ⟩(q2).

Proof. ... Qed.

Definition select_union_distr_fun q := (* Functional rewrite *)

match q with

| NRAEnvSelect q0 (NRAEnvBinop AUnion q1 q2) =>

NRAEnvBinop AUnion (NRAEnvSelect q0 q1) (NRAEnvSelect q0 q2)

| _ => q

end.

Proposition select_union_distr_fun_correctness q: (* Rewrite is correct *)

select_union_distr_fun q ⇒ q.

Proof.

tprove_correctness q.

apply tselect_union_distr.

Qed.

Challenges:

� Depth of specification (equality, what’s an equivalence, typing...).

� Handling environments in intermediate representations
7



2. Handling Environments

With variables (i.e., lambdas):

map(λa.(a.city))(map(λp.(p.addr))(P )) ≡map(λp.((p.addr).city))(P )
map(λx.(e))(map(λy.(u))(v)) ≡map(λy.(e[u/x]))(v)

Without variables (i.e., combinators):

χ⟨In.a.city⟩(χ⟨[a∶In]⟩(χ⟨In.p.addr⟩(χ⟨[p∶In]⟩(q)))) ≡ χ⟨In.p.addr .city⟩(χ⟨[p∶In]⟩(q))
χ⟨q1⟩(χ⟨q2⟩(q)) ≡ χ⟨q1○q2⟩(q)

� Rewrites with variables/binders is harder (e.g., here involves substitution)

� Rewrites with combinators is easier (e.g., here plan composition)

� Correctness of binders manipulation notoriously difficult to mechanize

� See: POPLMark, and once again, Cherniack and Zdonik, SIGMOD 1996!
8



2. Handling Environments

With variables (i.e., lambdas):

map(λp.([p ∶ p, k ∶ filter(λc.(p.age < c.age))(p.child)])(P )
Without variables (i.e., combinators):

χ

⟨[p ∶ In.p, k ∶ χ⟨In.c⟩⎛⎝σ⟨In.p.age<In.c.age⟩
⎛
⎝⋈d⟨χ⟨[c∶In]⟩(In.p.child)⟩({In})

⎞
⎠
⎞
⎠]⟩
(χ⟨[p∶In]⟩(P ))

Cost of reification:

� 5 iterators instead of 2

� nesting depth 3 instead of 2

� Use of dependent join (⋈d) to combine p and c bindings

9



2. Handling Environments

Sensitive to source language semantics & Encoding

e.g., for Designer Rules DSL:

� Environment = Source language variables + current item being matched

� Initial plans: from 400 to 2500 operators, depth 7 to 13

� Reification of environment manipulation impedes optimization

10



3. Nested Relational Algebra with Combinators

NRA Syntax q ∶∶= d ∣ In ∣ q2 ○ q1 ∣ ⊞ q ∣ q1 ⊠ q2 ∣ χ⟨q2⟩(q1)

∣ σ⟨q2⟩(q1) ∣ q1 × q2 ∣ ⋈d⟨q2⟩(q1) ∣ q1 ∣∣ q2

NRA Semantics ⊢ q @ d ⇓a d′

� ⊢ In@ d ⇓a d (current value)

� q1 ○ q2 (sets current value in q1 to q2)

� ⊞ q: flatten, q.a, π, ...; q1⊠ q2: q1 = q2, q1 ∪q2, ⊕ (record concatenation), ...

� χ (map) ; σ (selection) ; × (Cartesian product) ; ⋈d (dependent join)

11



3. Nested Relational Algebra with Combinators

NRAe Syntax q ∶∶= d ∣ In ∣ q2 ○ q1 ∣ ⊞ q ∣ q1 ⊠ q2 ∣ χ⟨q2⟩(q1)

∣ σ⟨q2⟩(q1) ∣ q1 × q2 ∣ ⋈d⟨q2⟩(q1) ∣ q1 ∣∣ q2

∣ Env ∣ q2 ○
e q1 ∣ χ

e
⟨q⟩

NRAe Semantics γ ⊢ q @ d ⇓a d′

� γ ⊢ Env@ d ⇓a γ (current environment)

� q1 ○
e q2 (sets current environment in q1 to q2)

� q1 ○
e Env⊕ [x ∶ q2] (adding x to environment)

12



3. Nested Relational Algebra with Combinators

With variables (i.e., lambdas):

map(λp.([p ∶ p, k ∶ filter(λc.(p.age < c.age))(p.child)])(P )
With NRAe:

χ⟨[p ∶ Env.p, k ∶ σ⟨(Env.p.age<Env.c.age) ○e (Env⊕[c∶In])⟩(Env.p.child)] ○e [p ∶ In]⟩(P )

Cost of reification:

� Same number of iterators: 2

� Same nesting depth: 3

� No added (dependent) join

13



3. Nested Relational Algebra with Combinators

Lifting theorem

� All existing equivalences for NRA carry over to NRAe

σ⟨q0⟩(q1 ∪ q2) ≡ σ⟨q0⟩(q1) ∪ σ⟨q0⟩(q2)

χ⟨q1⟩(χ⟨q2⟩(q)) ≡ χ⟨q1○q2⟩(q)

14



3. Nested Relational Algebra with Combinators

Lifting theorem

� All existing equivalences for NRA carry over to NRAe

� True even is sub-plans parameters contain NRAe operators!

∀q1, q2, q ∈ NRA, χ⟨q1⟩(χ⟨q2⟩(q)) ≡a χ⟨q1○q2⟩(q)

Ô⇒ ∀q1, q2, q ∈ NRA
e, χ⟨q1⟩(χ⟨q2⟩(q)) ≡e χ⟨q1○q2⟩(q)

15



3. Nested Relational Algebra with Combinators

Lifting theorem

� Yes, the proof of that theorem has been mechanized

Fixpoint lift_nra_context (c:nra_ctxt) : nraenv_core_ctxt := ...

Theorem contextual_equivalence_lifting (c1 c2:nra_ctxt) :

c1 ≡a c2 -> lift_nra_context c1 ≡e lift_nra_context c2.

Proof.

apply lift_nra_context_proper.

Qed.

16



3. Nested Relational Algebra with Combinators

Translations In-Out of NRAe

� from NRAe to NNRC and NRA

� from CAMP and NRAλ(without blowup) to NRAe

17



3. Nested Relational Algebra with Combinators

� from NRAe to NRA in LATEX

JdKa = d

JInKa = In.D

Jq2 ○ q1Ka = Jq2Ka ○ ([E ∶ In.E]⊕ [D ∶ Jq1Ka])

J⊞qKa = ⊞JqKa

...

Figure 4: From NRAe to NRA✿. JqKa = q
′

� from NRAe to NRA in Coq (+ correctness proofs)

Fixpoint nra_of_nraenv_core (ae:nraenv_core) : nra :=

match ae with

| ANID => nra_data

| ANConst d => (AConst d)

| ANApp ea1 ea2 => AApp (nra_of_nraenv_core ea1)

(nra_wrap (nra_of_nraenv_core ea2))

| ANUnop u ae1 => AUnop u (nra_of_nraenv_core ae1)

...

18



3. Nested Relational Algebra with Combinators

(a) Initial plan sizes. (b) Initial plan depths. (c) Emitted NNRC sizes.

Other Practical Benefits:

� NRAe gives an elegant way to represent ’let’ bindings:

� e.g., view definitions for SQL and OQL (q ○e Env ⊕ [view ∶ qv])

� e.g., common subexpression elimination in query plans

� Optimization for ODM Designer Rules

� Combination of existing and new NRA rewrites (~100)

� Benchmarks: plan size and depth; Optimizer effectiveness
19



4. Implementation

� Around: 40k lines of code ; 45k lines of proofs

� Coq ↦ OCaml (90k) ↦ native code or JavaScript

� Optimizer: naive cost model, directed rewrites, until fixpoint

� Designed for extensibility (add/remove optimizations; change cost)

� Timed up to a few seconds for large plans (e.g., TPC-H queries)

� Small runtimes for now (Java, Javascript and Scala)

20



4. Implementation

� Type System (Wadlerfest’2016):

� Support for objects (used in OQL and Designer rules)

� Support for optional types (e.g., for null values)

21



4. Implementation

� Type System (Wadlerfest’2016):

� Support for objects (used in OQL and Designer rules)

� Support for optional types (e.g., for null values)

� Full NRAe with OrderBy, GroupBy and Joins

22



4. Implementation

� Type System (Wadlerfest’2016):

� Support for objects (used in OQL and Designer rules)

� Support for optional types (e.g., for null values)

� Full NRAe with GroupBy and Joins

� Proof coverage matters & garbage-in garbage-out

23



Conclusion

http://querycert.github.io/

� Query compiler in Coq; Large subset of compiler proved correct

� NRAe: Easier rewrites & proofs ; Keep plan simple

� Some future directions: (suggestions or applications welcome!)

� End to end certification (e.g., SQL to JavaScript)

� Certified runtimes (including e.g., Join algorithms)

� Other languages (e.g., SQL++) or backend

� Grow the query optimizer (Join reordering, Cost model...)

24


