
Experience Report:

Prototyping a Query Compiler using Coq

Joshua Auerbach, Martin Hirzel, Louis Mandel, Avi Shinnar and Jérôme Siméon

IBM T.J. Watson Research Center

ICFP, September 2017

ODM Insights

Operational Decision Manager Insights:

� make sense of the events generated from customer interactions

� act smartly

Kinds of application:

� fraud detection

� marketing campaign

2

Programming model

Example of marketing campaign:

when a purchase occurs , called LAST

if

the total amount of all order items

in the order items of LAST is

more than ’average order amount’

and the customer status of ’the customer’ is NONE

then

...

Definition of a global aggregate:

define ’average order amount’

as the average amount of the order items of all orders,

where the number of elements in the order items of each order is at least

evaluated every day at 9:28:58 AM

3

Compiler of global aggregate queries

ODM Insights

(Chain of)

Map/Reduce(s)

JRules

Query

Object

Model

JavaScript Library

(Runtime)

Result

Cloudant
Data

Cloudant

Reads

Result

Returns

 G
o
a
l

� From JRules

� pattern matching

� object model

� To Cloudant

� distributed database for JSON

� map/reduce

4

Compiler architecture

From JRules to Cloudant through:

� Nested Relational Algebra with environment (NRAe)

� conservative extension of NRA

� good for optimization

� Named Nested Relational Calculus Map Reduce

� small imperative language

� distributed model data model

� map/reduce computations

� 6 intermediate languages, 3 optimizers

5

Prototype implementation in Coq

The Complete Book, Ullman

Why Coq?:

� verify the optimizations (some are non standard)

� large semantics gap between the source and target language

� the query languages are of reasonable size

� interesting research project
6

Implementation: ASTs and Translations

Coq is a functional programming language:

� Abstract Syntax Trees:

Inductive nraenv : Set :=

| NRAEnvID : nraenv

| NRAEnvConst : data -> nraenv

| NRAEnvMap : nraenv -> nraenv -> nraenv

...

� Translation and optimization functions:

Definition select_union_distr_fun q :=

match q with

| NRAEnvSelect q0 (NRAEnvBinop OpBagUnion q1 q2) =>

NRAEnvBinop OpBagUnion (NRAEnvSelect q0 q1) (NRAEnvSelect q0 q2

| _ => q

end.

7

Implementation: evaluation functions

Each intermediate language has an evaluation function:
� example

Definition nraenv_eval c (e:nraenv) (env:data) (x:data)

: option data := ...

� it defines the semantics of the language

� it allows test execution

8

Implementation

Algebraic equivalence:

Lemma select_union_distr q0 q1 q2 :

σ⟨ q0 ⟩(q1 ∪ q2) ≡ σ⟨ q0 ⟩(q1) ∪ σ⟨ q0 ⟩(q2).

Proof. ... Qed.

Correctness proof:

Lemma select_union_distr_fun_correctness q:

select_union_distr_fun q ≡ q.

Proof.

Hint Rewrite select_union_distr : envmap_eqs.

prove_correctness q.

Qed.

9

Choice between proof and test

� JRules & Cloudant: semantics defined by the implementation

� Core compiler: proof of semantics preservation (including the optimizers)

� Map/Reduce compiler: test and proof of some properties:

� well formed map/reduce chain (DAG)

� correctness of individual rewritings

Remarks:

� Core compiler based on existing languages (and already relatively well

formalized)

� Compilation of map/reduce from scratch: proofs made the experiments

slower

10

Integration into ODM

ODM Insights

(Chain of)

Map/Reduce(s)

JRules

Query

Object

Model

JavaScript Library

(Runtime)

Result

Cloudant
Data

Cloudant

Reads

Result

Returns

 G
o
a
l

11

Integration into ODM

Query Compiler

+ Query (OCaml)

ODM Insights

Specification

(Coq)

JRules to Coq

(Java)

Proofs

(Chain of)

Map/Reduce(s)

JRules

Query

Object

Model

JavaScript Library

(Runtime)

Result

Cloudant
Data

Cloudant

Reads

Result

Returns

E
x
t
r
a
c
t
io
n

Generate Coq code from ODM:

� enables the evaluation of queries directly in Coq

� eases unitary testing

� particularly useful at the beginning of the project

12

Integration into ODM

Query Compiler

(OCaml)

ODM Insights

Specification

(Coq)
Proofs

(Chain of)

Map/Reduce(s)

JRules

Query

Object

Model

JavaScript Library

(Runtime)

Result

Cloudant
Data

Cloudant

Reads

Result

Returns

E
x
t
r
a
c
t
io
n

JRule to s-expr

(Java)

Communication between Coq and Java through s-expressions:

� provide an independent compiler

� useful for automated tests

13

Integration into ODM

Compile the Coq compiler to a Jar file:

� extraction to OCaml and compilation using OCamlJava

� allows the integration of the Coq code in the product

14

Integration into ODM

Rewrite the compiler in Java:

� goal: transfert to the product team

� idiomatic Java code

� avoid (or identify) divergences between the Coq and Java codes

� ensure that the two implementation have a similar behavior

15

Double compilation chain Coq-Java

� Coq extracted to OCaml then to a jar with OCamlJava

� double compilation chain allows an arbitrary path through Coq and Java

� tests of translations = comparison of ASTs

� tests of optimizations = comparisons between traces

� translation from Coq to Java about 3–4 weeks

16

Java Code

/** From TOptimEnvFunc.v: last checked 5/2/2016

Definition tselect_and_fun {fruntime:foreign_runtime} (p: nraenv)

:= match p with

NRAEnvSelect op1 (NRAEnvSelect op2 op) =>

NRAEnvSelect (NRAEnvBinop OpAnd op2 op1) op

| _ => p end. */

private static class tselect_and_fun implements OptFun {

public NraNode optimize(NraNode nra) {

if (nra instanceof NraSelect) {

NraNode op1 = nra.getOperand1();

NraNode select = nra.getOperand2();

if (select instanceof NraSelect) {

NraNode op2 = select.getOperand1();

NraNode op = select.getOperand2();

return new NraSelect(

new NraBinaryOperator(BinaryOperator.And, op2, op1), op);

} }

return nra; } }

17

Some numbers

� 2014: Semantics of JRules and translation into a database algebra

(7k spec, 10k proofs)

� 2015: Full compiler (optimizer, map/reduce model, code generation)

� 2016: Integration in ODM (translation to Java, tests) + open-sourcing of

the research compiler

� Total: about 4 year-person

18

Q*cert

SemRule

NRAλ

SQL

OQL

Rule

NRAλ

SQL

OQL

CAMP NRAe

cNRAe

NRA

NNRC

cNNRC

NNRCMR CldMR Cloudant

Java

JS

Spark
(map-
reduce)

Spark
(datasets)tDNNRCDNNRC

https://querycert.github.io

19

Non trivial parts or novels

Object type system for the data language [Wadlerfest’2016]

� branded values/types

� type inference

� proofs

Handling of the environment/variables in the intermediate languages

[SIGMOD’2017]

� NRAe based on combinators

� proof of equivalence with NRA

� proof that NRA optimizations still apply

� proof about scoping in NNRC

Model to introduce distribution

Compiler driver to handle compilation paths

20

Conclusion

Coq for prototyping

� allows a nice mix of proof and programming

� the extra development cost can be justified for certain kind of

applications

� for large project having a certified part can greatly reduce debogging cost

� good surprise: adding SQL to the compiler took only 6 weeks

Current activities

� support of SQL++

� openwhisk deployment (IBM’s serverless platform)

21

Other perspectives

From prototyping to certification (Candidate: SQL to JavaScript)

� what’s SQL Semantics? what’s JavaScript semantics?

� certified JavaScript runtime

Growing the query optimizer

� join reordering, query containment, query decorrelation, etc

� cost model and search space

� compilation time

� consumption by database community

More on: distribution, data updates, view maintenance

Applications: BlockChain, Node.js library, Language-Integrated Queries

https://querycert.github.io

22

